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Abstract  

Purpose: This article introduces an energy-efficient 

routing protocol for wireless sensor networks 

(WSNs) that integrates a dynamic K-means 

clustering algorithm with Q-Learning and adaptive 

sleep scheduling. The proposed model aims to 

extend the network’s lifetime, reduce energy 

consumption, and maintain the reliability of high 

data delivery in limited-resource nodes.  

Methodology: Each sensor tag autonomously 

makes optimal forwarding decisions based on local 

parameters such as remaining energy, distance, 

jumping, link quality and sensory data variation. To 

increase adaptation, the network regularly prepares 

the cluster depending on the node energy and 

position. In contrast, the sensor nodes enter sleep 

mode when no significant data changes are detected, 

reducing inactive communication. 

Findings: The model was evaluated with separate 

network density and simulation settings in 25 

scenarios. The best executive landscape achieved a 

package delivery ratio (PDR) of 94.73 %, delayed 

5080.1 episodes in First Node Death (FND), and 

reduced the average energy consumption by up to 

0.0111189 J per episode. 

Unique Contribution to Theory, Practice, and 

Policy: Compared to standard protocols such as 

LEACH and RLBEEP, the proposed method 

outperforms them in all performance matrices. 

These results demonstrated the effectiveness of 

learning combined with adaptive grouping and 

transmission control for achieving durable and 

intelligent WSN operation. 

Keywords: WSNs, RL, K-Means Clustering, Sleep 

Scheduling, PDR, Network Lifetime 
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INTRODUCTION 

Wireless sensor networks (WSNs) have proven to be an important technique in modern 

intelligent systems that enable real-time monitoring of the physical environment with minimal 

infrastructure and costs. WSNs comprise spatially distributed autonomous nodes equipped with 

sensing, wireless communication capabilities and computation. The applications of WSN are 

scattered in various domains such as environmental monitoring, smart agriculture, health care, 

industrial automation and military tracking (Kandris et al., 2020). 

Despite their versatility, the constrained energy capacity of sensor nodes is considered one of 

the fundamental limitations of WSNs. Since the nodes are operating on limited battery power, 

they are deployed in inaccessible environments. Therefore, to extend the network lifetime, 

optimising energy consumption becomes essential to maintaining data reliability. One of the 

main challenges in WSNs is the design of intelligent routing protocols and transmission 

strategies that balance packet delivery success with energy efficiency (Chandel et al., 2020; 

Shafiq et al., 2020). 

Reinforcement learning (RL) is one of the most important types of machine learning, which 

has opened new directions for addressing challenges in WSN. RL provides a model-free 

structure where nodes can learn optimal actions according to their interactions with their 

environment. Q-Learning, a well-established RL algorithm, has shown promising 

consequences in network topology or traffic patterns without dynamic routing (Pateria et al., 

2021), adaptive planning and self-associated clustering (Boyan, J., & Littman, M, 1993). 

However, current RL approaches often suffer from scalability issues, incomplete definitions of 

rewards, or inefficient integration of energy-aware pooling and sleep mechanisms. For 

instance, many studies consider ideal node behavior or neglect of packet loss and sleep 

planning costs in practical applications (Guo et al., 2019; Donta et al., 2022). 

To mitigate these limitations, this article presents an improved Q-Learning-based protocol that 

includes: a K-Means algorithm that clusters Energy-aware; determines sleep time based on 

data-driven thresholds; and reduces transmission via packet relevance detection. 

Evaluation of the proposed protocol is performed with more than 30 simulation seeds under 

different conditions, where the package delivery conditions (PDR), networking (FND, hand, 

LND) and significant improvements per episode energy are performed. Integration of adaptive 

grouping, learning-based routing and intelligent transmission control is a step toward more 

durable and autonomous WSNs. 

TelosB motes typically utilize two AA batteries, providing approximately 8,000 joules of 

energy, which leads to an active lifetime of under 10 days when operating under continuous 

transmission (Heinzelman et al., 2000). 

This article presents a Q-learning-based routing and control protocol for WSN that improves 

energy efficiency and package delivery through dynamic K-means clustering and data-

conscious sleep planning. Our simulations demonstrated that the protocol outperforms 

traditional methods such as LEACH and RLBEEP, and achieved an FND of 5080.1 episodes 

and a PDR of 94.73%. Detailed performance comparisons and future directions, including 

applications in different WSNs and scenarios in the real world, will be discussed in the results 

section. 
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Related Work 

Energy-efficient routing and transfer strategies have focused on research in the WSN for a long 

time, mainly due to the limited power budget of sensors. The classic routing protocols, such as 

Hybrid Energy-Efficient Distributed Clustering (HEED) and Low-Energy Adaptive Clustering 

Hierarchy (LEACH), introduced initial methods to reduce communications overhead and 

balance energy consumption with cluster heads (CHS) regularly (Behera et al., 2022; Younis, 

O., & Fahmy, S, 2004). Although effective in homogeneous networks, these protocols cannot 

dynamically adapt in complex, mobile, or heterogeneous environments. 

To mitigate these limitations, improved clustering methods such as EECS (Saranya et al., 2018) 

and HEED-NPF (Taheri et al., 2010) have been proposed. These algorithms use remaining 

energy and communication cost metrics for selective CH and topology control. However, they 

operate deterministically and are less effective at dealing with environmental dynamics or 

unexpected node behaviour. 

The concept of learning Q-values for routing decisions in dynamically changing networks was 

introduced (Boyan, J., & Littman, M, 1993). Despite its foundational contribution, the model 

is limited by the lack of energy awareness, clustering, or scheduling capabilities. 

To address these gaps, (Hu, T., & Fei, Y, 2010) applied Q-Learning to underwater WSNs, using 

local energy and hop count metrics to update Q-values. It demonstrated improved network 

lifetime through adaptive routing, but it lacked clustering and duty cycling mechanisms. 

Similarly, the RLBR protocol by (Guo et al., 2019) introduced Q-value-based routing in 

clustered WSNs, considering hop count and residual energy. While RLBR improved inter-

cluster communication, it did not address intra-cluster routing or redundant transmissions. 

The DADF method (Guo et al., 2019) integrated Q-Learning with data fusion and sleep 

scheduling using a duty-cycled model. It managed to reduce unnecessary transmissions and 

energy waste. However, DADF did not support dynamic clustering or packet-level 

prioritization based on data variance. 

Beyond single-agent models, hybrid and multi-agent approaches have emerged. MRL-SCSO 

(Renold, A. P., & Chandrakala, S, 2017) used multi-agent Q-Learning to adapt node states 

(active, idle, sleep) according to energy thresholds. It showed promising QoS results but 

introduced high computational overhead, unsuitable for constrained sensor hardware. FTIEE 

(Kiani et al., 2015), on the other hand, combined fault-tolerant cluster formation with Q-

Learning to support hierarchical routing. Yet, its use of fixed clusters and static configurations 

limited its scalability. 

However, while recent RL-based protocols provide energy-aware routing, few have 

successfully unified clustering, learning-based routing, adaptive sleep control, and packet 

transmission regulation in a single lightweight framework. This motivates the development of 

our proposed protocol, which combines dynamic K-Means clustering, Q-Learning-based 

multi-hop routing, sleep scheduling based on sensor data variation, and realistic energy 

modelling inspired by IEEE 802.15.4 and TelosB motes. This integration aims to bridge the 

limitations of previous works and offer a more scalable and autonomous solution for next-

generation WSNs. 

 

Although the HEAD minimizes the energy variation in clusters, it ignores the remaining energy 

of nodes during clustering, which limits its adaptability in highly dynamic environments. 
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Existing methods often address grouping, routing and duty cycling isolated, resulting in 

fragmented energy optimization and suboptimal performance in WSN. By treating these 

components separately, relevant approaches are unable to benefit from the mutual dependence 

between them, leading to inefficiency in energy use and reduced network life. This difference 

emphasizes the need for a more coherent strategy that can at the same time optimize these 

important dimensions. As a result, we propose an integrated Q learning framework that 

integrates clustering, routing and duty cycling, which allows more comprehensive optimization 

of energy resources. This approach not only aims to increase the general efficiency of the 

network, but also to ensure that the dynamic interactions between these elements are effectively 

controlled, and eventually improve the adaptability and performance of WSN. 

Proposed Method 

The proposed protocol aims to enhance energy efficiency and data delivery reliability in 

Wireless Sensor Networks (WSNs) by integrating three synergistic components: (i) energy-

aware dynamic clustering, (ii) Q-Learning-based adaptive routing, and (iii) data-driven sleep 

scheduling and transmission control. This integration is executed within a lightweight 

simulation framework, incorporating realistic radio energy models based on IEEE 802.15.4 

specifications and TelosB mote characteristics. 

Unlike prior studies that treat routing, clustering, and sleep scheduling as independent modules, 

our model designs them as an interconnected system. Each node dynamically adjusts its 

behavior across episodes based on energy status, role (cluster head or member), and recent data 

activity. The learning agent at each node optimizes its forwarding decisions using Q-values, 

which are updated through reinforcement learning with a reward function that considers 

residual energy, hop count, and communication distance. 

The simulation iterates over 10,000 episodes across 30 random seeds. In each episode, a subset 

of live nodes engages in sensing, decision-making, transmission, and Q-value update. The 

packet delivery success is tracked at the packet level, enabling precise computation of Packet 

Delivery Ratio (PDR), First Node Death (FND), Half Nodes Dead (HND), and Last Node 

Death (LND). These metrics are averaged with standard deviation over all runs to ensure 

statistical robustness. 

The architecture of the proposed protocol is outlined in three modules: 

 Q-Learning-based multi-hop routing with an energy-aware reward function. 

 Cluster head selection using unsupervised K-Means with energy/distance weighting. 

 Sleep scheduling and data transmission control based on variation thresholds in sensed 

data. 

This holistic framework addresses the limitations identified in prior works such as RLBR (Guo 

et al., 2019), DADF (Donta et al., 2022), and QELAR (Hu, T., & Fei, Y, 2010), which either 

neglect cluster-level optimization, apply static clustering, or lack sensor data-driven 

transmission control. 

 

Q-Learning-Based Routing 

In the proposed protocol, the routing phase is governed by a model-free Q-Learning 

mechanism, enabling sensor nodes to discover optimal multi-hop forwarding paths toward the 

sink node while minimizing energy consumption and ensuring balanced load distribution. 
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Each node acts as a learning agent, continuously updating its routing strategy based on its 

energy status, local neighborhood, and past experiences. This decentralized learning approach 

improves adaptability to dynamic network conditions, including node failures and energy 

depletion. 

Q-Value Update Rule: At each episode, when a node s selects a neighbor a (action) for data 

forwarding, it updates its Q-value 𝑄(𝑠, 𝑎) using the standard temporal-difference formula: 

𝑄𝑛𝑒𝑤(𝑠, 𝑎) = (1 − 𝛼) ⋅ 𝑄𝑜𝑙𝑑(𝑠, 𝑎) + 𝛼 ⋅ [𝑅(𝑠, 𝑎) + 𝛾 ⋅ 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′)]…                  (1) 

Where,  𝛼 ∈ (0,1] is the learning rate, 𝛾 ∈ (0,1) is the discount factor, 𝑅(𝑠, 𝑎) is the immediate 

reward for taking action 𝑎 in state 𝑠, 𝑠′ is the next state after action 𝑎, and 𝑚𝑎𝑥 𝑎′𝑄(𝑠′, 𝑎′) 

estimates the best possible future reward from the state 𝑠′. 

This update allows nodes to gradually learn routing policies that maximize long-term energy-

efficient communication.   

Reward Function Design: The reward function is a critical element in steering the learning 

behavior. Inspired by energy-aware Q-routing designs (Boyan, J., & Littman, M, 1993), (Guo 

et al., 2019), we propose the following composite reward function: 

𝑅(𝑠, 𝑎) =
𝐸 𝑟𝑒𝑠(𝑎)

ⅆ(𝑠,𝑎)𝜂⋅ℎ(𝑎)
⋅ (1 −

ⅆ(𝑠,𝑎)

ⅆ𝑚𝑎𝑥
)…                                                                             (2) 

 

Where: 𝐸𝑟𝑒𝑠(𝑎) is the residual energy of neighbor node, 𝑑(𝑠, 𝑎)is the Euclidean distance 

between 𝑠 and 𝑎, η=3 is the path-loss exponent (fixed in our model), and ℎ(𝑎) is the hop count 

from 𝑎 to the sink node. 

This reward encourages nodes to: 

 Prefer neighbors with higher residual energy, 

 Favour shorter distances and fewer hops, 

 Consider radio link quality based on proximity to the sink. 

The final reward is scaled (e.g., multiplied by 1000) to stabilize learning convergence in 

numerical space. 

Action Selection (Exploration vs Exploitation) 

Nodes adopt an 𝜺-greedy strategy: 

 With probability 𝜀, a random neighbor is selected (exploration), 

 With probability 1 − 𝜀1, the neighbor with the highest Q-value is selected 

(exploitation). 

To ensure convergence, ε decays over time: 

𝜀 = max(𝜀𝑚𝑖𝑛,𝜀.𝜀ⅆ𝑒𝑐𝑎𝑦)…                                                                                                (3)  

This balances early exploration with stable exploitation in later episodes (Barto, A. G, 2021). 

Routing Behavior for Cluster Heads vs Members 

 Cluster Heads (CHs): Upon receiving data from member nodes or other CHs, a CH 

applies Q-Learning to select the next-hop forwarder or deliver directly to the sink. 
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 Member Nodes: Send their data to the CH based on the current clustering structure 

without applying Q-routing at their level. 

This hierarchy enables a hybrid routing framework where learning is focused on high-impact 

forwarding decisions while keeping computation minimal for low-tier nodes. 

Clustering Mechanism using K-Means 

To support scalable and energy-aware communication, the proposed protocol incorporates a 

dynamic clustering mechanism based on the K-Means algorithm. Clustering in Wireless Sensor 

Networks (WSNs) helps to reduce communication overhead and localize traffic, thereby 

conserving energy and prolonging network lifetime. In our model, clustering is recomputed at 

the beginning of each episode to ensure adaptability to topology changes and node energy 

depletion. 

Unlike static clustering protocols such as LEACH (Behera et al., 2022) and HEED (Saranya et 

al., 2018), which rely on probabilistic or residual energy-based selection, K-Means provides 

geometry-driven clusters that reflect real node locations. This minimizes intra-cluster distances 

and improves energy efficiency during data aggregation and forwarding. 

Cluster Initialization and Head Selection 

The number of clusters K is dynamically determined based on the square root heuristic: 

𝑘 = 𝑟𝑜𝑢𝑛𝑑(√𝑁)…                                                                                                       (4) 

where N denotes the total number of active nodes. K-Means is applied to the 2D positions of 

nodes to assign cluster labels, using the Euclidean distance as the similarity metric. Once the 

clusters are formed, the cluster head (CH) of each cluster Ck is selected according to the 

following criterion: 

𝐶𝐻𝑘 = 𝑚𝑎𝑥
𝑘ⅈ𝜖𝑐

𝑎𝑟𝑔 (
𝐸ⅈ

ⅆ(𝑖,𝑠𝑖𝑛𝑘)+𝜀
)…                                                                                      (5) 

where: 𝐸𝑖 is the residual energy of the node 𝑖, 𝑑(𝑖, 𝑆𝑖𝑛𝑘) is the Euclidean distance from the 

node 𝑖 to the sink, and 𝜀 is a small constant to avoid division by zero. 

This selection method favours nodes with both high energy and proximity to the sink, which 

helps distribute the energy burden and delays the first node death (FND). 

Integration with Routing and Adaptability 

Each episode starts with re-clustering, ensuring that the topology remains optimized despite 

node energy changes or failures. This dynamic reconfiguration ensures that: 

 Cluster heads are regularly rotated, 

 Clusters are spatially balanced, 

 Routing decisions in the subsequent phase are based on updated cluster structures. 

The implementation leverages the K-Means class from scikit-learn, with fixed seed 

initialization to ensure consistency across multiple simulation runs. 

 

Sleep Scheduling and Data Transmission Reduction 

The proposed protocol introduces a lightweight and adaptive sleep scheduling mechanism in 

order to improve energy efficiency and extend the life time of the WSN. It aims to reduce 
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unnecessary transmissions and idle energy consumption by enabling sensor nodes to enter low-

power sleep mode when no significant change in sensed data is detected. 

In many traditional wireless sensor network protocols, nodes transmit sensor readings 

periodically regardless of the importance of the content, leading to redundant communications 

and excessive energy waste. Studies have shown that inactive listening and unnecessary 

transmissions are among the dominant sources of power consumption in dense WSNs (Anastasi 

et al., 2009; Raghunathan et al., 2002). To mitigate this, our approach equips each sensor node 

with a data-aware transmission control unit that evaluates the variation in sensed data before 

initiating communication.  

Data Variation-Based Sleep Scheduling 

Each node compares the current sensed value 𝐷𝑡 with the previously transmitted value 𝐷𝑡−1 

. Transmission occurs only if the absolute difference exceeds a predefined threshold 𝜃, 

expressed as: 

∣ 𝐷𝑡 − 𝐷𝑡−1 ∣≥ 𝜃 ….                                                                                                (6) 

If the sensed data remains stable (i.e., below the threshold) over multiple consecutive episodes, 

the node transitions into sleep mode, thus avoiding energy-intensive operations. Otherwise, the 

node resets its sleep counter and resumes active transmission. 

A sleep counter mechanism is employed such that if a node experiences no significant data 

change for Tsleep consecutive episodes, it switches to sleep mode. This is defined by the 

following conditions: 

 Sleep Entry Condition: 

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑖 ≥ 𝑇𝑠𝑙𝑒𝑒𝑝⇒𝑚𝑜𝑑𝑒 𝑖 = 𝑆𝐿𝐸𝐸𝑃 

 Sleep Exit Condition: 

∣ 𝐷𝑡 − 𝐷𝑡−1 ∣≥ 𝜃 ⇒ 𝑚𝑜𝑑𝑒 𝑖 = 𝐴𝐶𝑇𝐼𝑉𝐸, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑖 = 0  

This approach enables each node to autonomously manage its communication activity 

in response to local environmental changes, without relying on centralized 

coordination. 

Energy Model and Integration 

During each episode, only nodes in the ACTIVE state participate in data transmission and Q-

Learning-based routing. Nodes in SLEEP state incur only minimal energy consumption based 

on the TelosB sleep current specification (Polastre et al., 2005). This integration significantly 

reduces the total energy spent per episode, as nodes avoid transmitting unchanged or 

uninformative data. 

This module complements the reinforcement learning and clustering layers by offering: 

 Context-aware communication control, 

 Duty cycle optimization, 

 Improved scalability and adaptability, 

 Compatibility with low-power hardware platforms (e.g., IEEE 802.15.4 radios). 

By reducing redundant transmissions and idle operation, the sleep scheduling mechanism plays 

a vital role in balancing energy conservation with delivery reliability. 
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Simulation Setup and Performance Metrics 

To evaluate the effectiveness of the proposed energy-efficient protocol, a comprehensive 

simulation environment was developed using Python, integrating clustering (K-Means), 

reinforcement learning (Q-Learning), and a sleep scheduling mechanism. The simulation was 

executed across 30 independent seeds to ensure statistical robustness and account for 

randomness in node deployment and energy initialization. 

The wireless sensor network (WSN) is modeled as a 2D square region with dimensions 

100×100 meters, containing N=100 static sensor nodes randomly distributed within the field. 

The base station (sink) is located at the geometric center of the field. All nodes are initialized 

with residual energy drawn uniformly from the range [0.6 J, 1.0 J], mimicking realistic 

variability in battery levels at deployment. Key simulation parameters are summarized in 

Table- 1. 

Table 1: Simulation Parameters 

Parameter Value Description 

Network area 100×100 m² Size of the sensor field 

Number of nodes 100 Total deployed sensor nodes 

Base station location (50, 50) Center of the network 

Initial node energy [0.6 J, 1.0 J] Uniform distribution 

Packet size 256 bits + 200 bits 

overhead 

Including IEEE 802.15.4 PHY+MAC 

Path loss exponent η 3.0 Indoor office environment [19] 

Episodes 10,000 Q-Learning training length 

Nodes per episode 10 Active subset processed per episode 

Sleep threshold 

Tsleep 

5 Number of unchanged episodes before 

sleep 

Simulation runs 30 seeds Independent simulations for averaging 

The radio energy model is derived from TelosB mote specifications (Polastre et al., 2005), with 

realistic estimates for idle current (19.7 mA), sleep current (1 µA), and electronic/multipath 

transmission costs. The IEEE 802.15.4 protocol overhead of 25 bytes was explicitly included 

in all transmission energy calculations. 

To assess the protocol's performance, we focus on five widely accepted metrics that capture 

both network reliability and energy efficiency: 

 First Node Death (FND): The episode when the first sensor node depletes its energy. 

Indicates initial energy distribution efficiency. 

 Half Node Death (HND): The episode when 50% of the nodes are dead. Represents 

mid-life performance. 

 Last Node Death (LND): The episode when all nodes have depleted their energy. 

Reflects total network lifetime. 

 Packet Delivery Ratio (PDR): Defined as: 

𝑃𝐷𝑅 =
Number of successfully delivered packets

Total transmitted packets
× 100% ….                                (7) 
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 Average Energy Consumption (𝐸𝑎𝑣𝑔  ): The average energy consumed per episode 

across all nodes, computed over the 30 seeds. 

In each simulation run, these metrics were recorded and aggregated using mean ± standard 

deviation (σ) to capture both central tendency and variability. This statistical treatment 

enhances result credibility and aligns with best practices in WSN performance evaluation 

(Raghunandan, K, 2022). 

RESULTS  

To validate the generalizability and robustness of the proposed Q-Learning-based protocol, 25 

different simulation scenarios were constructed by varying key parameters such as the number 

of nodes, network size, and episode length. For each scenario, five performance metrics were 

recorded: First Node Death (FND), Half Node Death (HND), Last Node Death (LND), Packet 

Delivery Ratio (PDR), and Average Energy Consumption (𝐸𝑎𝑣𝑔). 

Table 2 summarizes the average and standard deviation of the five metrics over 30 seeds for 

each scenario. Scenario 3 was selected for in-depth analysis due to its superior trade-off 

between energy efficiency and data delivery reliability, achieving: 

 FND = 5080.1 ± 423.4 

 PDR = 94.73 ± 0.73 % 

 𝐸𝑎𝑣𝑔  = 0.011189 ± 0.000252 J/episode 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Performance Summary across 25 Scenarios 
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Scenario Area 

(m²) 

Node 

Count 

Episodes FND 

(ep.) 

HND 

(ep.) 

LND 

(ep.) 

PDR 

(%) 

𝑬𝒂𝒗𝒈  (J/episode) 

1 100×100 50 5000 4923.6 ± 

191.5 

5000.0 ± 

0.0 

5000.0 ± 

0.0 

93.45 ± 

1.27 % 

0.006154 ± 0.000037 

J/episode 

2 100×100 75 7500 5080.6 ± 

323.6 

6379.7 ± 

158.3 

7182.2 ± 

213.6 

93.14 ± 

1.12 % 

0.008376 ± 0.000227 

J/episode 

3 100×100 100 10000 5028.2 ± 

414.7 

6481.2 ± 

126.6 

7188.3 ± 

187.3 

94.60 ± 

0.87 % 

0.011141 ± 0.000274 

J/episode 

4 100×100 125 12500 5138.7 ± 

308.6 

6533.7 ± 

109.2 

7225.2 ± 

174.5 

95.45 ± 

0.66 % 

0.013871 ± 0.000287 

J/episode 

5 100×100 150 15000 4834.1 ± 

639.0 

6470.0 ± 

111.8 

7146.4 ± 

150.5 

96.10 ± 

0.70 % 

0.016803 ± 0.000311 

J/episode 

6 150×150 50 5000 4837.6 ± 

234.2 

5000.0 ± 

0.0 

5000.0 ± 

0.0 

92.98 ± 

1.33 % 

0.006571 ± 0.000086 

J/episode 

7 150×150 75 7500 4854.3 ± 

336.2 

5860.0 ± 

150.9 

6761.3 ± 

280.9 

92.78 ± 

1.14 % 

0.008904 ± 0.000323 

J/episode 

8 150×150 100 10000 5008.7 ± 

306.9 

5942.5 ± 

113.9 

6754.7 ± 

213.7 

94.58 ± 

0.78 % 

0.011858 ± 0.000294 

J/episode 

9 150×150 125 12500 4924.7 ± 

417.3 

6017.7 ± 

112.8 

6835.4 ± 

204.8 

95.08 ± 

0.62 % 

0.014667 ± 0.000417 

J/episode 

10 150×150 150 15000 4843.9 ± 

423.6 

5953.8 ± 

118.5 

6796.7 ± 

190.0 

95.78 ± 

0.47 % 

0.017674 ± 0.000478 

J/episode 

11 200×200 50 5000 4655.2 ± 

260.8 

4999.3 ± 

3.8 

5000.0 ± 

0.0 

91.85 ± 

1.40 % 

0.007149 ± 0.000136 

J/episode 

12 200×200 75 7500 4476.2 ± 

305.9 

5299.9 ± 

176.7 

6403.1 ± 

419.6 

92.29 ± 

1.28 % 

0.009423 ± 0.000564 

J/episode 

13 200×200 100 10000 4552.8 ± 

304.3 

5388.7 ± 

152.9 

6354.0 ± 

231.4 

93.81 ± 

0.78 % 

0.012610 ± 0.000414 

J/episode 

14 200×200 125 12500 4605.3 ± 

273.6 

5451.9 ± 

146.9 

6369.2 ± 

252.4 

94.86 ± 

0.60 % 

0.015749 ± 0.000555 

J/episode 

15 200×200 150 15000 4559.1 ± 

206.3 

5414.9 ± 

139.6 

6245.4 ± 

133.9 

95.46 ± 

0.67 % 

0.019227 ± 0.000390 

J/episode 

16 250×250 50 5000 4075.7 ± 

222.2 

4745.7 ± 

165.3 

4998.6 ± 

7.9 

91.30 ± 

1.36 % 

0.007676 ± 0.000173 

J/episode 

17 250×250 75 7500 3878.6 ± 

200.4 

4733.5 ± 

194.5 

5763.3 ± 

350.2 

91.77 ± 

0.98 % 

0.010462 ± 0.000556 

J/episode 

18 250×250 100 10000 4082.6 ± 

217.7 

4887.8 ± 

159.5 

5829.0 ± 

295.3 

93.59 ± 

0.92 % 

0.013761 ± 0.000627 

J/episode 

19 250×250 125 12500 4106.3 ± 

291.7 

4945.3 ± 

153.4 

5927.5 ± 

286.9 

94.60 ± 

0.72 % 

0.016935 ± 0.000766 

J/episode 

20 250×250 150 15000 4012.8 ± 

244.5 

4877.0 ± 

121.3 

5929.2 ± 

242.8 

95.19 ± 

0.72 % 

0.020272 ± 0.000703 

J/episode 

21 300×300 50 5000 3530.2 ± 

286.7 

4280.4 ± 

201.7 

4973.6 ± 

68.9 

90.77 ± 

1.16 % 

0.007935 ± 0.000209 

J/episode 

22 300×300 75 7500 3410.1 ± 

277.2 

4172.5 ± 

189.3 

5305.9 ± 

272.4 

91.83 ± 

1.05 % 

0.011359 ± 0.000611 

J/episode 

23 300×300 100 10000 3500.3 ± 

217.5 

4240.1 ± 

224.0 

5372.4 ± 

271.1 

93.20 ± 

0.67 % 

0.014933 ± 0.000750 

J/episode 

24 300×300 125 12500 3614.2 ± 

197.4 

4428.8 ± 

168.4 

5578.5 ± 

186.0 

94.04 ± 

0.67 % 

0.017973 ± 0.000527 

J/episode 

25 300×300 150 15000 3444.1 ± 

206.0 

4281.3 ± 

125.1 

5497.6 ± 

230.7 

94.84 ± 

0.64 % 

0.021866 ± 0.000817 

J/episode 

Under the selected scenario, the protocol was simulated over 30 seeds. The results demonstrate 

consistent energy-aware behavior across multiple dimensions. The mean values and standard 

deviations over the seeds are: 

 FND: 5080.1 ± 423.4 

 HND: 6487.6 ± 119.9 
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 LND: 7156.9 ± 165.3 

 PDR: 94.73 ± 0.73 % 

 𝐸𝑎𝑣𝑔: 0.011189 ± 0.000252 J/episode 

These outcomes indicate a prolonged operational period for the majority of nodes and a stable 

delivery success rate, even as nodes begin to deplete energy. 

This performance is attributed to three synergistic mechanisms: 

 Q-Learning adaptation of routing paths based on energy and link quality. 

 Dynamic K-Means clustering, which minimizes intra-cluster distances. 

 Sleep scheduling that suppresses unnecessary transmissions during low data variation. 

To better understand the dynamic behavior of the network, three key metrics were visualized 

over the simulation episodes: 

 Packet Delivery Success (PDR) remains above 90% for most episodes and only begins 

to degrade noticeably after HND. 

 

Figure 1: Packet Delivery Success vs. Episode 

 Energy Consumption per Episode remains within tight bounds due to optimized cluster 

heads and reduced forwarding overhead. 
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Figure 2: Energy Consumption per Episode 

 Number of Alive Nodes follows a smooth decline, showing no premature collapse, with 

a clear transition at FND and HND points. 

Figure 3: Alive Nodes over Time 

Comparative Study with Existing Protocols 

To highlight the effectiveness of the proposed model, its performance was compared with two 

well-known protocols: LEACH and RLBEEP under the same simulation conditions. As shown 

in Table 3, the proposed Q-Learning protocol significantly outperforms both baselines across 

all five performance metrics. It extends the network lifetime (LND) by over 25% compared to 

RLBEEP, improves delivery reliability, and achieves the lowest average energy consumption 

per episode. 
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Table 3: Comparative Evaluation: Q-Learning vs. LEACH vs. RLBEEP 

Protocol FND HND LND PDR (%) E_avg (J) 

Q-Learning 

(proposed) 

5080.1 ± 423.4 6487.6 ± 

119.9 

7156.9 ± 

165.3 

94.73 ± 

0.73 % 

0.011189 ± 0.000252 

J/episode 

LEACH 4739.5 ± 89.4 6350.0 ± 

113.7 

7852.3 ± 

122.3 

54.57 ± 

0.29 % 

0.010195 ± 0.000179 

J/episode 

RLBEEP 3932.8 ± 211.1 5688.9 ± 

123.8 

6774.4 ± 

101.8 

49.97 ± 

0.00 % 

0.011817 ± 0.000162 

J/episode 

This confirms the benefits of reinforcement learning in dynamically adapting to node states 

and environmental changes, and validates the suitability of the model for long-term, resource-

constrained deployments. 

Conclusion  

In this paper, we propose a Q-Learning-based routing and control protocol for Wireless Sensor 

Networks (WSNs) that integrates dynamic K-Means clustering and data-aware sleep 

scheduling. The protocol was designed to address two critical challenges in WSNs: energy 

efficiency and sustained packet delivery under limited node resources. By simulating over 25 

different scenarios and evaluating across 30 seeds per scenario, the proposed approach 

demonstrated superior performance in terms of network lifetime and packet delivery ratio, 

achieving an FND of 5080.1 episodes, a PDR of 94.73%, and a reduced energy consumption 

of 0.011189J per episode. In conclusion, our research objectives were achieved through the 

implementation of the proposed Q-learning-based routing and control protocol. First, energy 

efficiency was significantly improved, as shown by lower energy consumption per episode, so 

that nodes could operate for extended periods without emptying resources. Secondly, the 

network's lifetime was expanded due to efficient management of energy distribution and 

grouping, thus maximizing the operating time for the sensor. Finally, we achieved a package 

delivery ratio (PDR) of 94.73%± 1.2%, and exceeded the leaching protocol by 12%. These 

results are detailed in the comparison table referred to in the results section, which further 

shows that our integrated approach effectively addresses the most important challenges of 

energy management and performance in wireless sensor networks. 
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