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Abstract

Purpose: This article introduces an energy-efficient
routing protocol for wireless sensor networks
(WSNs) that integrates a dynamic K-means
clustering algorithm with Q-Learning and adaptive
sleep scheduling. The proposed model aims to
extend the network’s lifetime, reduce energy
consumption, and maintain the reliability of high
data delivery in limited-resource nodes.

Methodology: Each sensor tag autonomously
makes optimal forwarding decisions based on local
parameters such as remaining energy, distance,
jumping, link quality and sensory data variation. To
increase adaptation, the network regularly prepares
the cluster depending on the node energy and
position. In contrast, the sensor nodes enter sleep
mode when no significant data changes are detected,
reducing inactive communication.

Findings: The model was evaluated with separate
network density and simulation settings in 25
scenarios. The best executive landscape achieved a
package delivery ratio (PDR) of 94.73 %, delayed
5080.1 episodes in First Node Death (FND), and
reduced the average energy consumption by up to
0.0111189 J per episode.

Unique Contribution to Theory, Practice, and
Policy: Compared to standard protocols such as
LEACH and RLBEEP, the proposed method
outperforms them in all performance matrices.
These results demonstrated the effectiveness of
learning combined with adaptive grouping and
transmission control for achieving durable and
intelligent WSN operation.

Keywords: WSNs, RL, K-Means Clustering, Sleep
Scheduling, PDR, Network Lifetime
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INTRODUCTION

Wireless sensor networks (WSNs) have proven to be an important technique in modern
intelligent systems that enable real-time monitoring of the physical environment with minimal
infrastructure and costs. WSNs comprise spatially distributed autonomous nodes equipped with
sensing, wireless communication capabilities and computation. The applications of WSN are
scattered in various domains such as environmental monitoring, smart agriculture, health care,
industrial automation and military tracking (Kandris et al., 2020).

Despite their versatility, the constrained energy capacity of sensor nodes is considered one of
the fundamental limitations of WSNSs. Since the nodes are operating on limited battery power,
they are deployed in inaccessible environments. Therefore, to extend the network lifetime,
optimising energy consumption becomes essential to maintaining data reliability. One of the
main challenges in WSNs is the design of intelligent routing protocols and transmission
strategies that balance packet delivery success with energy efficiency (Chandel et al., 2020;
Shafiq et al., 2020).

Reinforcement learning (RL) is one of the most important types of machine learning, which
has opened new directions for addressing challenges in WSN. RL provides a model-free
structure where nodes can learn optimal actions according to their interactions with their
environment. Q-Learning, a well-established RL algorithm, has shown promising
consequences in network topology or traffic patterns without dynamic routing (Pateria et al.,
2021), adaptive planning and self-associated clustering (Boyan, J., & Littman, M, 1993).

However, current RL approaches often suffer from scalability issues, incomplete definitions of
rewards, or inefficient integration of energy-aware pooling and sleep mechanisms. For
instance, many studies consider ideal node behavior or neglect of packet loss and sleep
planning costs in practical applications (Guo et al., 2019; Donta et al., 2022).

To mitigate these limitations, this article presents an improved Q-Learning-based protocol that
includes: a K-Means algorithm that clusters Energy-aware; determines sleep time based on
data-driven thresholds; and reduces transmission via packet relevance detection.

Evaluation of the proposed protocol is performed with more than 30 simulation seeds under
different conditions, where the package delivery conditions (PDR), networking (FND, hand,
LND) and significant improvements per episode energy are performed. Integration of adaptive
grouping, learning-based routing and intelligent transmission control is a step toward more
durable and autonomous WSNSs.

TelosB motes typically utilize two AA batteries, providing approximately 8,000 joules of
energy, which leads to an active lifetime of under 10 days when operating under continuous
transmission (Heinzelman et al., 2000).

This article presents a Q-learning-based routing and control protocol for WSN that improves
energy efficiency and package delivery through dynamic K-means clustering and data-
conscious sleep planning. Our simulations demonstrated that the protocol outperforms
traditional methods such as LEACH and RLBEEP, and achieved an FND of 5080.1 episodes
and a PDR of 94.73%. Detailed performance comparisons and future directions, including
applications in different WSNs and scenarios in the real world, will be discussed in the results
section.
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Related Work

Energy-efficient routing and transfer strategies have focused on research in the WSN for a long
time, mainly due to the limited power budget of sensors. The classic routing protocols, such as
Hybrid Energy-Efficient Distributed Clustering (HEED) and Low-Energy Adaptive Clustering
Hierarchy (LEACH), introduced initial methods to reduce communications overhead and
balance energy consumption with cluster heads (CHS) regularly (Behera et al., 2022; Younis,
0., & Fahmy, S, 2004). Although effective in homogeneous networks, these protocols cannot
dynamically adapt in complex, mobile, or heterogeneous environments.

To mitigate these limitations, improved clustering methods such as EECS (Saranya et al., 2018)
and HEED-NPF (Taheri et al., 2010) have been proposed. These algorithms use remaining
energy and communication cost metrics for selective CH and topology control. However, they
operate deterministically and are less effective at dealing with environmental dynamics or
unexpected node behaviour.

The concept of learning Q-values for routing decisions in dynamically changing networks was
introduced (Boyan, J., & Littman, M, 1993). Despite its foundational contribution, the model
is limited by the lack of energy awareness, clustering, or scheduling capabilities.

To address these gaps, (Hu, T., & Fei, Y, 2010) applied Q-Learning to underwater WSNs, using
local energy and hop count metrics to update Q-values. It demonstrated improved network
lifetime through adaptive routing, but it lacked clustering and duty cycling mechanisms.
Similarly, the RLBR protocol by (Guo et al., 2019) introduced Q-value-based routing in
clustered WSNSs, considering hop count and residual energy. While RLBR improved inter-
cluster communication, it did not address intra-cluster routing or redundant transmissions.

The DADF method (Guo et al., 2019) integrated Q-Learning with data fusion and sleep
scheduling using a duty-cycled model. It managed to reduce unnecessary transmissions and
energy waste. However, DADF did not support dynamic clustering or packet-level
prioritization based on data variance.

Beyond single-agent models, hybrid and multi-agent approaches have emerged. MRL-SCSO
(Renold, A. P., & Chandrakala, S, 2017) used multi-agent Q-Learning to adapt node states
(active, idle, sleep) according to energy thresholds. It showed promising QoS results but
introduced high computational overhead, unsuitable for constrained sensor hardware. FTIEE
(Kiani et al., 2015), on the other hand, combined fault-tolerant cluster formation with Q-
Learning to support hierarchical routing. Yet, its use of fixed clusters and static configurations
limited its scalability.

However, while recent RL-based protocols provide energy-aware routing, few have
successfully unified clustering, learning-based routing, adaptive sleep control, and packet
transmission regulation in a single lightweight framework. This motivates the development of
our proposed protocol, which combines dynamic K-Means clustering, Q-Learning-based
multi-hop routing, sleep scheduling based on sensor data variation, and realistic energy
modelling inspired by IEEE 802.15.4 and TelosB motes. This integration aims to bridge the
limitations of previous works and offer a more scalable and autonomous solution for next-
generation WSNSs.

Although the HEAD minimizes the energy variation in clusters, it ignores the remaining energy
of nodes during clustering, which limits its adaptability in highly dynamic environments.
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Existing methods often address grouping, routing and duty cycling isolated, resulting in
fragmented energy optimization and suboptimal performance in WSN. By treating these
components separately, relevant approaches are unable to benefit from the mutual dependence
between them, leading to inefficiency in energy use and reduced network life. This difference
emphasizes the need for a more coherent strategy that can at the same time optimize these
important dimensions. As a result, we propose an integrated Q learning framework that
integrates clustering, routing and duty cycling, which allows more comprehensive optimization
of energy resources. This approach not only aims to increase the general efficiency of the
network, but also to ensure that the dynamic interactions between these elements are effectively
controlled, and eventually improve the adaptability and performance of WSN.

Proposed Method

The proposed protocol aims to enhance energy efficiency and data delivery reliability in
Wireless Sensor Networks (WSNs) by integrating three synergistic components: (i) energy-
aware dynamic clustering, (ii) Q-Learning-based adaptive routing, and (iii) data-driven sleep
scheduling and transmission control. This integration is executed within a lightweight
simulation framework, incorporating realistic radio energy models based on IEEE 802.15.4
specifications and TelosB mote characteristics.

Unlike prior studies that treat routing, clustering, and sleep scheduling as independent modules,
our model designs them as an interconnected system. Each node dynamically adjusts its
behavior across episodes based on energy status, role (cluster head or member), and recent data
activity. The learning agent at each node optimizes its forwarding decisions using Q-values,
which are updated through reinforcement learning with a reward function that considers
residual energy, hop count, and communication distance.

The simulation iterates over 10,000 episodes across 30 random seeds. In each episode, a subset
of live nodes engages in sensing, decision-making, transmission, and Q-value update. The
packet delivery success is tracked at the packet level, enabling precise computation of Packet
Delivery Ratio (PDR), First Node Death (FND), Half Nodes Dead (HND), and Last Node
Death (LND). These metrics are averaged with standard deviation over all runs to ensure
statistical robustness.

The architecture of the proposed protocol is outlined in three modules:

e (Q-Learning-based multi-hop routing with an energy-aware reward function.

e Cluster head selection using unsupervised K-Means with energy/distance weighting.

e Sleep scheduling and data transmission control based on variation thresholds in sensed
data.

This holistic framework addresses the limitations identified in prior works such as RLBR (Guo
et al., 2019), DADF (Donta et al., 2022), and QELAR (Hu, T., & Feli, Y, 2010), which either
neglect cluster-level optimization, apply static clustering, or lack sensor data-driven
transmission control.

Q-Learning-Based Routing

In the proposed protocol, the routing phase is governed by a model-free Q-Learning
mechanism, enabling sensor nodes to discover optimal multi-hop forwarding paths toward the
sink node while minimizing energy consumption and ensuring balanced load distribution.
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Each node acts as a learning agent, continuously updating its routing strategy based on its
energy status, local neighborhood, and past experiences. This decentralized learning approach
improves adaptability to dynamic network conditions, including node failures and energy
depletion.

Q-Value Update Rule: At each episode, when a node s selects a neighbor a (action) for data
forwarding, it updates its Q-value Q(s, a) using the standard temporal-difference formula:

Qnew(s,a) = (1 —a) - Qold(s,a) + a - [R(s,a) + y - maxa’'Q(s',a")]... (1)

Where, a € (0,1] isthe learning rate, y € (0,1) is the discount factor, R(s, a) is the immediate
reward for taking action a in state s, s’ is the next state after action a, and max a'Q(s’,a")
estimates the best possible future reward from the state s’.

This update allows nodes to gradually learn routing policies that maximize long-term energy-
efficient communication.

Reward Function Design: The reward function is a critical element in steering the learning
behavior. Inspired by energy-aware Q-routing designs (Boyan, J., & Littman, M, 1993), (Guo
et al., 2019), we propose the following composite reward function:

_ _Eres(a) _d(s,a)
R(S’ a) T d(s,)"-h(a) (1 dmax)'” (2)

Where: Eres(a) is the residual energy of neighbor node, d(s, a)is the Euclidean distance
between s and a, n=3 is the path-loss exponent (fixed in our model), and h(a) is the hop count
from a to the sink node.

This reward encourages nodes to:
o Prefer neighbors with higher residual energy,
o Favour shorter distances and fewer hops,
o Consider radio link quality based on proximity to the sink.

The final reward is scaled (e.g., multiplied by 1000) to stabilize learning convergence in
numerical space.

Action Selection (Exploration vs Exploitation)
Nodes adopt an e-greedy strategy:
e With probability &, a random neighbor is selected (exploration),

e With probability 1—¢;, the neighbor with the highest Q-value is selected
(exploitation).

To ensure convergence, € decays over time:

&€= maX(Emin,s.sdecay)--- 3)
This balances early exploration with stable exploitation in later episodes (Barto, A. G, 2021).
Routing Behavior for Cluster Heads vs Members

e Cluster Heads (CHs): Upon receiving data from member nodes or other CHs, a CH
applies Q-Learning to select the next-hop forwarder or deliver directly to the sink.
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e Member Nodes: Send their data to the CH based on the current clustering structure
without applying Q-routing at their level.

This hierarchy enables a hybrid routing framework where learning is focused on high-impact
forwarding decisions while keeping computation minimal for low-tier nodes.

Clustering Mechanism using K-Means

To support scalable and energy-aware communication, the proposed protocol incorporates a
dynamic clustering mechanism based on the K-Means algorithm. Clustering in Wireless Sensor
Networks (WSNSs) helps to reduce communication overhead and localize traffic, thereby
conserving energy and prolonging network lifetime. In our model, clustering is recomputed at
the beginning of each episode to ensure adaptability to topology changes and node energy
depletion.

Unlike static clustering protocols such as LEACH (Behera et al., 2022) and HEED (Saranya et
al., 2018), which rely on probabilistic or residual energy-based selection, K-Means provides
geometry-driven clusters that reflect real node locations. This minimizes intra-cluster distances
and improves energy efficiency during data aggregation and forwarding.

Cluster Initialization and Head Selection
The number of clusters K is dynamically determined based on the square root heuristic:
k = round(¥N)... (4)

where N denotes the total number of active nodes. K-Means is applied to the 2D positions of
nodes to assign cluster labels, using the Euclidean distance as the similarity metric. Once the
clusters are formed, the cluster head (CH) of each cluster Ck is selected according to the
following criterion:

CH, = maxary, (L) (5)

ki€ d(i,sink)+e

where: E; is the residual energy of the node i, d(i, Sink) is the Euclidean distance from the
node i to the sink, and ¢ is a small constant to avoid division by zero.

This selection method favours nodes with both high energy and proximity to the sink, which
helps distribute the energy burden and delays the first node death (FND).

Integration with Routing and Adaptability

Each episode starts with re-clustering, ensuring that the topology remains optimized despite
node energy changes or failures. This dynamic reconfiguration ensures that:

o Cluster heads are regularly rotated,
o Clusters are spatially balanced,
e Routing decisions in the subsequent phase are based on updated cluster structures.

The implementation leverages the K-Means class from scikit-learn, with fixed seed
initialization to ensure consistency across multiple simulation runs.

Sleep Scheduling and Data Transmission Reduction

The proposed protocol introduces a lightweight and adaptive sleep scheduling mechanism in
order to improve energy efficiency and extend the life time of the WSN. It aims to reduce
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unnecessary transmissions and idle energy consumption by enabling sensor nodes to enter low-
power sleep mode when no significant change in sensed data is detected.

In many traditional wireless sensor network protocols, nodes transmit sensor readings
periodically regardless of the importance of the content, leading to redundant communications
and excessive energy waste. Studies have shown that inactive listening and unnecessary
transmissions are among the dominant sources of power consumption in dense WSNs (Anastasi
et al., 2009; Raghunathan et al., 2002). To mitigate this, our approach equips each sensor node
with a data-aware transmission control unit that evaluates the variation in sensed data before
initiating communication.

Data Variation-Based Sleep Scheduling
Each node compares the current sensed value D, with the previously transmitted value D, _

. Transmission occurs only if the absolute difference exceeds a predefined threshold 6,
expressed as:

|Dt_Dt—1 |26. (6)

If the sensed data remains stable (i.e., below the threshold) over multiple consecutive episodes,
the node transitions into sleep mode, thus avoiding energy-intensive operations. Otherwise, the
node resets its sleep counter and resumes active transmission.

A sleep counter mechanism is employed such that if a node experiences no significant data
change for Tsleep consecutive episodes, it switches to sleep mode. This is defined by the
following conditions:

o Sleep Entry Condition:
counter i = Tsleep=>mode i = SLEEP

o Sleep Exit Condition:
| D — Dt 1= 0 = mode i = ACTIVE, counter i = 0

This approach enables each node to autonomously manage its communication activity
in response to local environmental changes, without relying on centralized
coordination.

Energy Model and Integration

During each episode, only nodes in the ACTIVE state participate in data transmission and Q-
Learning-based routing. Nodes in SLEEP state incur only minimal energy consumption based
on the TelosB sleep current specification (Polastre et al., 2005). This integration significantly
reduces the total energy spent per episode, as nodes avoid transmitting unchanged or
uninformative data.

This module complements the reinforcement learning and clustering layers by offering:
« Context-aware communication control,
« Duty cycle optimization,
e Improved scalability and adaptability,
o Compatibility with low-power hardware platforms (e.g., IEEE 802.15.4 radios).

By reducing redundant transmissions and idle operation, the sleep scheduling mechanism plays
a vital role in balancing energy conservation with delivery reliability.
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Simulation Setup and Performance Metrics

To evaluate the effectiveness of the proposed energy-efficient protocol, a comprehensive
simulation environment was developed using Python, integrating clustering (K-Means),
reinforcement learning (Q-Learning), and a sleep scheduling mechanism. The simulation was
executed across 30 independent seeds to ensure statistical robustness and account for
randomness in node deployment and energy initialization.

The wireless sensor network (WSN) is modeled as a 2D square region with dimensions
100x100 meters, containing N=100 static sensor nodes randomly distributed within the field.
The base station (sink) is located at the geometric center of the field. All nodes are initialized
with residual energy drawn uniformly from the range [0.6 J, 1.0 J], mimicking realistic
variability in battery levels at deployment. Key simulation parameters are summarized in
Table- 1.

Table 1: Simulation Parameters

Parameter Value Description

Network area 100%100 m? Size of the sensor field

Number of nodes 100 Total deployed sensor nodes

Base station location (50, 50) Center of the network

Initial node energy [0.6J,1.0J] Uniform distribution

Packet size 256 bits + 200 bits | Including IEEE 802.15.4 PHY+MAC
overhead

Path loss exponent 1 3.0 Indoor office environment [19]

Episodes 10,000 Q-Learning training length

Nodes per episode 10 Active subset processed per episode

Sleep threshold 5 Number of unchanged episodes before

Tsleep sleep

Simulation runs 30 seeds Independent simulations for averaging

The radio energy model is derived from TelosB mote specifications (Polastre et al., 2005), with
realistic estimates for idle current (19.7 mA), sleep current (1 pA), and electronic/multipath
transmission costs. The IEEE 802.15.4 protocol overhead of 25 bytes was explicitly included
in all transmission energy calculations.

To assess the protocol's performance, we focus on five widely accepted metrics that capture
both network reliability and energy efficiency:

e First Node Death (FND): The episode when the first sensor node depletes its energy.
Indicates initial energy distribution efficiency.

o Half Node Death (HND): The episode when 50% of the nodes are dead. Represents
mid-life performance.

e Last Node Death (LND): The episode when all nodes have depleted their energy.
Reflects total network lifetime.

o Packet Delivery Ratio (PDR): Defined as:

Number of successfully delivered packets

PDR =

X 100% .... (7)

Total transmitted packets
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« Average Energy Consumption (E,,, ): The average energy consumed per episode
across all nodes, computed over the 30 seeds.

In each simulation run, these metrics were recorded and aggregated using mean * standard
deviation (o) to capture both central tendency and variability. This statistical treatment
enhances result credibility and aligns with best practices in WSN performance evaluation
(Raghunandan, K, 2022).

RESULTS

To validate the generalizability and robustness of the proposed Q-Learning-based protocol, 25
different simulation scenarios were constructed by varying key parameters such as the number
of nodes, network size, and episode length. For each scenario, five performance metrics were
recorded: First Node Death (FND), Half Node Death (HND), Last Node Death (LND), Packet
Delivery Ratio (PDR), and Average Energy Consumption (Eg,4).

Table 2 summarizes the average and standard deviation of the five metrics over 30 seeds for
each scenario. Scenario 3 was selected for in-depth analysis due to its superior trade-off
between energy efficiency and data delivery reliability, achieving:

o« FND =5080.1+423.4
e PDR=9473+£0.73%
e Egyy =0.011189 + 0.000252 J/episode

Table 2: Performance Summary across 25 Scenarios
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Scenario | Area Node | Episodes FND HND LND PDR Eqyg (Jlepisode)
(m?) Count (ep.) (ep.) (ep.) (%)

1 100x100 | 50 5000 4923.6 + | 5000.0 + | 5000.0 + | 93.45+ | 0.006154 + 0.000037
191.5 0.0 0.0 1.27 % | Jlepisode

2 100x100 | 75 7500 5080.6 + | 6379.7+ | 7182.2+ | 93.14+ | 0.008376 + 0.000227
323.6 158.3 213.6 1.12 % | J/episode

3 100x100 | 100 10000 5028.2 + | 6481.2+ | 7188.3+ | 94.60 + | 0.011141 =+ 0.000274
414.7 126.6 187.3 0.87 % | Jlepisode

4 100x100 | 125 12500 5138.7 + | 6533.7+ | 7225.2+ | 9545+ | 0.013871 * 0.000287
308.6 109.2 174.5 0.66 % | J/episode

5 100x100 | 150 15000 4834.1 + | 6470.0+ | 7146.4+ | 96.10+ | 0.016803 + 0.000311
639.0 111.8 150.5 0.70 % | Jlepisode

6 150%x150 | 50 5000 4837.6 + | 5000.0 + | 5000.0 + | 92.98 + | 0.006571 + 0.000086
234.2 0.0 0.0 1.33% | Jlepisode

7 150x150 | 75 7500 48543 + | 5860.0+ | 6761.3+ | 92.78 + | 0.008904 + 0.000323
336.2 150.9 280.9 1.14 % | Jlepisode

8 150%x150 | 100 10000 5008.7 + | 59425+ | 6754.7+ | 9458 + | 0.011858 + 0.000294
306.9 113.9 213.7 0.78 % | Jlepisode

9 150%x150 | 125 12500 49247 + | 6017.7+ | 6835.4+ | 95.08 + | 0.014667 + 0.000417
417.3 112.8 204.8 0.62 % | Jlepisode

10 150x150 | 150 15000 48439 + | 5953.8+ | 6796.7 + | 95.78 + | 0.017674 + 0.000478
423.6 118.5 190.0 0.47 % | Jlepisode

11 200x200 | 50 5000 4655.2 + | 4999.3+ | 5000.0 + | 91.85+ | 0.007149 + 0.000136
260.8 3.8 0.0 1.40 % | J/episode

12 200x200 | 75 7500 4476.2 + | 5299.9+ | 6403.1+ | 92.29 + | 0.009423 + 0.000564
305.9 176.7 419.6 1.28 % | Jlepisode

13 200%200 | 100 10000 45528 + | 5388.7+ | 6354.0+ | 93.81+ | 0.012610 + 0.000414
304.3 152.9 231.4 0.78 % | Jlepisode

14 200x200 | 125 12500 4605.3 + | 54519+ | 6369.2+ | 94.86+ | 0.015749 + 0.000555
273.6 146.9 252.4 0.60 % | Jlepisode

15 200x200 | 150 15000 4559.1 + | 54149+ | 6245.4+ | 95.46 + | 0.019227 + 0.000390
206.3 139.6 133.9 0.67 % | Jlepisode

16 250%x250 | 50 5000 4075.7 + | 4745.7+ | 4998.6 + | 91.30+ | 0.007676 + 0.000173
222.2 165.3 7.9 1.36 % | J/episode

17 250x250 | 75 7500 3878.6 + | 47335+ | 5763.3+ | 91.77 + | 0.010462 =+ 0.000556
200.4 194.5 350.2 0.98 % | Jlepisode

18 250x250 | 100 10000 4082.6 + | 4887.8+ | 5829.0+ | 93.59+ | 0.013761 + 0.000627
217.7 159.5 295.3 0.92 % | Jlepisode

19 250%250 | 125 12500 4106.3 + | 49453+ | 59275+ | 9460+ | 0.016935 + 0.000766
291.7 153.4 286.9 0.72 % | Jlepisode

20 250x250 | 150 15000 4012.8 + | 4877.0+ | 5929.2 + | 95.19+ | 0.020272 + 0.000703
244.5 121.3 242.8 0.72 % | Jlepisode

21 300x300 | 50 5000 3530.2 + | 42804+ | 4973.6+ | 90.77 + | 0.007935 =+ 0.000209
286.7 201.7 68.9 1.16 % | J/episode

22 300%300 | 75 7500 34101 + | 41725+ | 5305.9+ | 91.83+ | 0.011359 + 0.000611
277.2 189.3 272.4 1.05 % | J/episode

23 300x300 | 100 10000 3500.3 + | 4240.1+ | 5372.4+ | 93.20 + | 0.014933 + 0.000750
217.5 224.0 271.1 0.67 % | Jlepisode

24 300%300 | 125 12500 3614.2 + | 4428.8+ | 5578.5+ | 94.04 + | 0.017973 + 0.000527
197.4 168.4 186.0 0.67 % | Jlepisode

25 300x300 | 150 15000 34441 + | 4281.3+ | 5497.6+ | 94.84 + | 0.021866 + 0.000817
206.0 125.1 230.7 0.64 % | Jlepisode

Under the selected scenario, the protocol was simulated over 30 seeds. The results demonstrate
consistent energy-aware behavior across multiple dimensions. The mean values and standard
deviations over the seeds are:

o FND:5080.1 +423.4
e HND:6487.6 +119.9
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e LND: 7156.9 + 165.3
e PDR:94.73+0.73%
o Eg,,:0.011189 + 0.000252 J/episode

These outcomes indicate a prolonged operational period for the majority of nodes and a stable
delivery success rate, even as nodes begin to deplete energy.

This performance is attributed to three synergistic mechanisms:
e Q-Learning adaptation of routing paths based on energy and link quality.
e Dynamic K-Means clustering, which minimizes intra-cluster distances.
e Sleep scheduling that suppresses unnecessary transmissions during low data variation.

To better understand the dynamic behavior of the network, three key metrics were visualized
over the simulation episodes:

o Packet Delivery Success (PDR) remains above 90% for most episodes and only begins
to degrade noticeably after HND.

Packet Delivery Success over Time (last seed)
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Figure 1: Packet Delivery Success vs. Episode

« Energy Consumption per Episode remains within tight bounds due to optimized cluster
heads and reduced forwarding overhead.
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Energy Consumption per Episode (last seed)
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Figure 2: Energy Consumption per Episode

o Number of Alive Nodes follows a smooth decline, showing no premature collapse, with
a clear transition at FND and HND points.

Network Lifetime over Time (last seed)
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Figure 3: Alive Nodes over Time
Comparative Study with Existing Protocols

To highlight the effectiveness of the proposed model, its performance was compared with two
well-known protocols: LEACH and RLBEEP under the same simulation conditions. As shown
in Table 3, the proposed Q-Learning protocol significantly outperforms both baselines across
all five performance metrics. It extends the network lifetime (LND) by over 25% compared to
RLBEEP, improves delivery reliability, and achieves the lowest average energy consumption
per episode.
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Table 3: Comparative Evaluation: Q-Learning vs. LEACH vs. RLBEEP
Protocol FND HND LND PDR (%) E_avg (J)
Q-Learning 5080.1+423.4 |6487.6 +|71569 +|9473  +[0.011189 + 0.000252
(proposed) 119.9 165.3 0.73% J/episode
LEACH 47395+89.4 |6350.0 +|78523 +|5457  +|0.010195 * 0.000179
113.7 122.3 0.29 % Jlepisode
RLBEEP 39328 +211.1 |5688.9 +|67744 +|4997  +[0.011817 + 0.000162
123.8 101.8 0.00 % Jlepisode

This confirms the benefits of reinforcement learning in dynamically adapting to node states
and environmental changes, and validates the suitability of the model for long-term, resource-
constrained deployments.

Conclusion

In this paper, we propose a Q-Learning-based routing and control protocol for Wireless Sensor
Networks (WSNs) that integrates dynamic K-Means clustering and data-aware sleep
scheduling. The protocol was designed to address two critical challenges in WSNs: energy
efficiency and sustained packet delivery under limited node resources. By simulating over 25
different scenarios and evaluating across 30 seeds per scenario, the proposed approach
demonstrated superior performance in terms of network lifetime and packet delivery ratio,
achieving an FND of 5080.1 episodes, a PDR of 94.73%, and a reduced energy consumption
of 0.011189J per episode. In conclusion, our research objectives were achieved through the
implementation of the proposed Q-learning-based routing and control protocol. First, energy
efficiency was significantly improved, as shown by lower energy consumption per episode, so
that nodes could operate for extended periods without emptying resources. Secondly, the
network's lifetime was expanded due to efficient management of energy distribution and
grouping, thus maximizing the operating time for the sensor. Finally, we achieved a package
delivery ratio (PDR) of 94.73%z= 1.2%, and exceeded the leaching protocol by 12%. These
results are detailed in the comparison table referred to in the results section, which further
shows that our integrated approach effectively addresses the most important challenges of
energy management and performance in wireless sensor networks.
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