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Abstract 

Purpose: This research is about a new COVID-19 SIR 

model containing three classes; susceptible S(t), infected 
I(t), and recovered R(t) with the convex incident rate.  

Methodology: The NCOVID-19 model was formulated in 

the following system, the whole population N(t) was 

divided into three classes S(t), I(t), and R(t), which 

represented Susceptible, Infected, and Recovered 

compartments in the form of differential equations. 

Lyapunov functions were used to validate the stability of 

the equilibrium of the ordinary differential equations, 

linearization of the system was also done using Jacobian 
matrices by finding the derivatives of f(x) for x.   

Findings: Covid-19 is an infectious disease caused by the 

novel coronavirus identified as Severe Acute Respiratory 

Syndrome Coronavirus 2 (SARS-CoV-2). The people 

infected by COVID-19 experience mild respiratory 

problems such as; Fever, dry cough, throat infection, and 

fatigue. People may also have symptoms such as nasal 

infection, aches, and sore throat. The pandemic has led to 

a dramatic loss of human life in Kenya, Africa, and the 

whole world as it presents an unprecedented challenge to 

public health, food systems, and the world of work.  This 

case study seeks to model covid-19 virus after lifting 

preventive measures with a major focus on Kisii County, 

the subject model was presented in the form of differential 

equations and the disease-free and endemic equilibrium 

was calculated for the model. Also, the basic reproduction 

number R0 = 0.7831 was calculated and the disease-free 

equilibrium was found to be asymptotically stable 

meaning that the virus could be eliminated from the 

population, this showed that the county government of 

Kisii was in good control of the COVID-19 situation., in 

addition, The global stability of the model was calculated 

using the Lyapunov function construction while the Local 

stability was calculated using the Jacobian matrices. The 

numerical solutions were calculated using the non-

standard finite difference scheme (NFDS) and MATLAB 
software.  

Unique Contribution to Theory, Practice and Policy: 
This study has laid a foundation for future research in the 

area. In the future, a study that can include the rate of 

COVID-19 virus mutation and its impacts is 
recommended. 

Keywords: Covid-19 SIR Model, Basic Reproduction 

Number R0, Global Stability, Local Stability, Non-
Standard Finite Difference Scheme, Citations 
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INTRODUCTION 

The covid-19 pandemic unfolded as a cluster of patients being admitted to the hospital in late 

December 2019, these patients were diagnosed with pneumonia. At first, the cause of the 

disease was linked to a seafood and wet animal market in Wuhan, Hubei Province China. It is 

now known that the etiological agent of the disease is a novel coronavirus identified as Severe 

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). WHO declared COVID-19 a 

pandemic in March 2020 and as of mid-July 2020 the virus had spread to 213 countries causing 

about 15,969,465 infections and 643,390 deaths. So far, the virus has devastated almost 

everything around the world. Social life, health, economy, education- all segments of human 

life have been severely affected. Health researchers, governmental policymakers, and 

healthcare authorities are puzzled about combating the deadly outbreak (Khan et al., 2020). 

They all have their point of view on the situation. They are trying hard to, at least, minimize 

the number of deaths caused by the outbreak. The people infected by the coronavirus pandemic 

experience mild respiratory problems such as; Fever, dry cough, throat infection, and fatigue. 

People may also have the symptoms as follows; nasal infection, aches, and sore throat.   

According to the WHO dashboard and the Ministry of Health, the first case of COVID-19 in 

Kenya was reported on 13th March 2020 with the capital Nairobi being the epicenter, this 

prompted the government to lock the country down which saw schools shut down, all places 

of social gatherings i.e., churches, mosques, and temples were also shut. Non-pharmaceutical 

containment measures such as wearing face masks, social distancing, quarantining of suspected 

cases, and contact tracing were imposed by the government. In this model data from the Kisii 

teaching and referral hospital WHO Coronavirus Disease Dashboard was fitted and used to 

project and predict the cumulative number of reported cases as well as to give insights on the 

likely peak time for COVID-19 based on the SIR mathematical model. 

MODEL FORMULATION 

The NCOVID-19 model was formulated in the following system, the whole population N(t) 

was divided into three classes S(t), I(t), and R(t), which represent Susceptible, Infected, and 

Recovered compartments in the form of differential equations given below  

 

dS(t)

dt
 = b – k(1-ΑS(t)I(t)) – αkβS(t)I(t) - µS(t) 

dI(t)

dt
= k (1- αS(t)I(t)) + αkβS(t)I(t) – (d0 + γ + µ) I(t)                                                       (1) 

dR(t)

dt
 = γI(t) - µR(t) 

For the above system (1) is presented in the form of a flow chart.  Table 1, describes the 

parameters used in system (1).  adding all equations implies  

dN(t)

dt
 = - (µN(t) + d0I(t) – b)                                                                                                  (2) 

http://www.iprjb.org/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7893319/#e0005
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7893319/table/t0005/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7893319/#e0005
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Model Diagram 

 

 

     Figure 1 

EQUILIBRIA 

For system 1 above an assumption is made that the Disease-Free Equilibrium exists for some 

values of the variables used, and they are denoted by E0 = (S0, 0,0) 

              E0 = (S0, 0, 0) =  ( 
𝑏

µ
 , 0 ,0) 

Endemic Equilibria 

        S*(t)= 
(µ+𝑑˳+𝛾)𝐼(𝑡)−𝑏

µ
 

        I*(t) = 
𝑘µ

𝑘𝛼(1−𝛽)(µ+𝑑˳+𝛾−𝑏)𝐼∗(𝑡)+µ(µ+𝑑˳+𝛾)
 

         R*(t) = 
𝛾

µ
 I*(t) 

THE BASIC REPRODUCTION NUMBER R0 

In epidemiology the R0 is the most important parameter because it gives the researcher an idea 

of the disease flows in the entire population, it also dictates what needs to be done to control 

the rate of spread. In this research, the R0 is obtained as follows. 

 

dX

dt
 = G – H             G =  k (1 – αI(t)S(t)) + αkβI(t)S(t)          H =              b-S(t) 

      0          (d0 + γ + µ) 

I(t)                                                     

The Jacobian of G is   G =   -kαS0 + kαβS0     0      and Jacobian of H is   H =   -µ          0                                                                                                                                                                                                                                           

0                                                      0               0                                                   0     d0 + γ + µ   
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H-1 = 
1

−µ(𝛾+𝑑0+µ)
    µ + d0 + γ      0                    GH-1 =   kα (β – 1) S0     0 which gives the R0 

                                   0               -µ                                        0              0              

               R0 = 
𝑘𝛼(1−𝛽)𝑏

µ.µ
                                        (3)                               

The R0 was computed using the parameters in Table 2 below and the value obtained was R0= 

0.7831, this showed that the county government of Kisii was in good control of the COVID-

19 situation. 

Theorem 1  

(i) If R0 ≤ 1there is no positive equilibrium of the system. 

(ii) If R0 > 1there is a unique positive equilibrium E*= (S*(t), I*(t), R*(t)) of the 

model(1),   called the endemic equilibrium. 

Table 2: Description of Parameters and Their Values 

Parameters Physical description Numerical value 

S(t) Susceptible compartment 220 in millions 

I(t) Infected compartment 0 in million 

R(t) Recovered compartment 0 in million 

d0 Death due to corona 0.02 

Μ Natural death 0.0062 

B Birth rate 10.7 

Β Protection rate 0.009, 0.0009 

K Constant rate 0.00761 

Α Isolation rate 0.009, 0.0009 

Γ Recovery rate 0.0003 

LOCAL STABILITY 

To get the local stability, the model was reduced to a set of two differential equations subject 

to the initial conditions given below. 

𝑑𝑆(𝑡)

𝑑𝑡
 = b – k (1 - αS(t)I(t)) – αkβS(t)I(t) - µS(t) 

𝑑𝐼(𝑡)

𝑑𝑡
 = k (1 – αS(t)I(t)) + αkβS(t)I(t) – (µ +d0 + γ) I(t)                                                (4) 

Subject to the following initial conditions   S(0) =S0⩾0,I(0)=I0⩾0.Which is explained by the 

following  

Theorem 2 

If R0 < 1, then the system(4)is locally asymptotically stable at the disease-free equilibrium E0.  

Proof 

http://www.iprjb.org/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7893319/#e0005
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7893319/#e0020
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At E0 the Jacobian matrix is given by   J0 =   
−µ

kα(1−β)b

µ

0 𝑅𝑜 − 1
       and the auxiliary equation J0 

is given by w3 + w2a1 + wa2 +a3 = 0 where  

a1 = (µ+β) (µ + α) + (µ + d0 + γ) (1-R0) ˃ 0 

a2 = (µ+β) (µ+β) [1 + (µ + γ + d0) (1-R0) ˃ 0 

a3 = (µ+β) (µ + α) (µ + γ + d0) (1-R0) ˃ 0 

a1a2 – a3 = (µ+β) (µ + α) ((µ + γ + d0)
2+(µ+β) (µ + α) [(d0 + γ + µ) + 1]) (1-R0) > 0         (5) 

The Routh-Hurwitz stability criteria are satisfied as a1 > 0, a2 > 0, a3 > 0, and a1r2 – r3 > 0 if R0 

< 1. which shows the system (1) is locally asymptotically stable at E0. Furthermore, at E* the 

system (4) is locally asymptomatically stable analogous to R0 > 1 which is proved in Theorem 

3 below. 

5.2 Theorem 3 

At E*, if R0 >1 then system(4) is locally asymptotically stable. 

Proof 

For system (4) Jacobian matrix is J1 =   αkI*(t) - µ - αkβI*(t)         αkS*(t) – αkβS*(t) 

           -αkI*(t) + αkβI*(t)         -kαS*(t) +αkβS*(t)-(µ+d0+γ) 

 

The matrix J1 was operated on to give matrix M1 as 

 

M1=           -µ                           - (µ+d0+γ)   

         -αk(1-β) I*(t)    -kα(1+β) S*(t) – (µ+d0+γ) 

 

The trace and determinant of M1 is given by tra (M1) = −2μ− kα(β+1) S*(t) − d0 – γ < 0,         

(6) 

And det (M1) = μ[αβ(1+β) + d0 + μ + γ] +αk (μ + d0 + γ) (β+1) > 0.                                           

(7) The determinant of J1 > 0. The real part at E*(t) “endemic equilibrium” of the 

model (4) has a negative value. Thus, with condition R0 > 1, the endemic equilibrium E*of 

system (4) is locally asymptotically stable. 

GLOBAL STABILITY 

The global stability for the disease-free and endemic equilibrium is presented using 

Lyapunov functions as shown in theorems 4 and 5 

Theorem 4 

If R0 < 1 then the disease-free equilibrium of the system(4)is globally asymptotically stable. 

Otherwise, unstable. To prove this theorem a Lyapunov function was constructed as follows.  

Ρ = c1(S(t)−S0) +c3I(t),      (8)  

http://www.iprjb.org/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7893319/#e0005
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7893319/#e0020
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7893319/#e0020
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7893319/#e0020
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7893319/#e0020
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7893319/#e0020
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such that c1, c2 and c3 > 0 are constants. For time (t) taking the derivative of (8), the PDE 

obtained is                                                                                                                                         
𝑝𝑑

𝑑𝑡
 = c1(b- k(1-αS(t)I(t))b – αkβS(t)I(t) - µS(t)) + c2(k(1 -αS(t)I(t)) +αkβS(t)I(t) – 

(µ+d0+γ)I(t)). 

𝑝𝑑

𝑑𝑡
 = c1b+k(1-αS(t)I(t)) (c2 – c1) +αkβS(t)I(t) (c2 – c1) + c1µS(t) – c2µI(t) – c1d0I(t) – c2γI(t) 

Assuming that c1 = c2 =c3 = 1, then     
𝑑𝑝

𝑑𝑡
 = - (µN(t) – b) – (d0 + γ) I(t) < 0 hence globally 

asymptotically stable for system (1) with R0 < 1. 

Theorem 5 

The endemic equilibrium E* of the model (1) is asymptotically globally stable if R0 > 1 this 

was proved by constructing Lyapunov functions as shown below 

ω = (µ + β) (S(t) – S*(t)) + (µ + β) I(t).  (9), differentiating equation (9) for time (t) given. 
𝑑𝜔

𝑑𝑡
 

= (µ+β) (S*(t)) + (µ + β) I*(t) 

substituting the values from equation (1) in the derivative above, yielded 

𝑑𝜔

𝑑𝑡
 = (µ+β) (b-k(1-αS(t)I(t)) – αkβS(t)I(t) - µS(t)) +(µ+β) (k (1- αS(t)I(t)) + αkβS(t)I(t) – 

(µ+d0+γ) I*(t)). 

𝑑𝜔

𝑑𝑡
 = -(µ+β) (µS(t) + (µ +d0 +γ) I*(t)) < 0. Thus 

𝑑𝜔

𝑑𝑡
 < 0 the endemic equilibrium E* of the 

model (1) is globally asymptotically stable, showing that R0 > 1. 

NUMERICAL RESULTS AND DISCUSSION 

The numerical solution for model (1) was calculated using values in table (2), COVID-19 

scientific data from Kisii County subjected to different compartments involved in the system 

was plugged into the Non-Standard Finite Difference scheme hence rewriting the system as  

𝑑𝑆(𝑡)

𝑑𝑡
 = b -k(1 -αS(t)I(t)) – αkβS(t)I(t) - µS(t)                                                                  (10) 

Which was decomposed using the Non-Standard Finite Difference scheme as follows 

Sj+1 − Sj

h
 = b – k(1 – αSj(t)Ij(t)) – αkβSj(t)Ij(t) - µSj(t)                                                        (11) 

Equation (1) was also written in Non-Standard Finite Difference scheme as  

SJ+1= Sj + h(b – k(1-αSj(t)Ij(t)) – αkβSj(t)Ij(t) - µSj(t) 

Ij+1= Ij + h(k(1 – αSj(t)Ij(t)) + αkβSj(t)Ij(t) – (d0 + γ + µ)Ij(t))     (12) 

Rj+1= Rj + h(γIj(t) - µRj(t)) 

http://www.iprjb.org/
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Figure 1: The Dynamical Behavior of Susceptible Population of the Considered Model 

 

Figure 2: The Dynamical Behavior of Infected Population of the Considered Model 

http://www.iprjb.org/
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Figure 3: The Dynamical Behavior of the Recovered Population of the Considered Model 

In this research model (1) was tested by taking the values of the parameter from Table 2 from 

the first of February 2023 to the 20th of September 2023, from the figure 1and 3 it is clearly 

seen that as the susceptibility was decreasing the level of infection was increasing in the first 

four months but in the month of July and August the infection rate slowed and finally in the 

last month it was nearly stable. From Figure 3 the rate of recovery from infection was rapid, 

the  simulation was performed by taking the protection parameters α and β to be 0.009 and 

further  decreasing the protection and isolation rate  up to α=0.0009 and β=0.0009.Finally the 

results were plotted in graphs Fig. 4, Fig. 5, and Fig. 6 for scientific interpretation. We see that 

the infection rate slowed down reducing the protection and isolation rate. The recovery rate 

was also slow. From this simulation, we observed that protection and isolation rates played 

significant roles in controlling the infection from further spreading in the community. see Fig. 

2,. 

http://www.iprjb.org/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7893319/figure/f0020/
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Figure 4: Dynamical Behavior of Susceptible Population of the Considered Model 

 

Figure 5: Dynamical Behavior of Infected Population of the Considered Model  
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Figure 6: Dynamical Behavior of Recovered Population of the Considered Model 

CONCLUSION AND RECOMMENDATION 

Conclusion 

The objective of this study was to model the transmission of COVID-19 in Kisii county, and 

to come up with a way of lowering the disease transmission rate, the model showed great 

success in projecting and predicting the transmission of the virus among individuals. Further 

the stability analysis was done using a series of partial differential equations which turned out 

to be asymptotically stable. 

The R0 was computed and found to be 0.7831 which is less than 1 (locally asymptotically 

stable) this meant that as the susceptibility was decreasing the level of infection was increasing 

in the first four months but in July and August the infection rate slowed and finally in the last 

month it was nearly stable. This research declared the high contagious rate from the infected 

population to the susceptible population. To overcome the pandemic the movement of people 

from one sub-county to the other should strictly be reduced for the sake of saving humanity. 

Also, the immigration of the exposed population to the infected community increased the 

infection. Isolation of infected individuals alongside observing safety protocols is the best 

option to secure a healthy community. It is necessary to judge the spread of the virus and model 

it with various parameters for proper supervision. The proper treatment of this pandemic is for 

Kenyan citizens to get fully vaccinated, observe the government safety protocols, and keep 

infected individuals away from healthy people. 

A healthy diet is also a key factor in the fight against this disease as it helps to build a strong 

immunity, the model also showed that if early detection of this deadly disease was made, then 

immediate action would be taken, leading to complete eradication. Hence the disease would 

not be endemic.   

http://www.iprjb.org/
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Recommendations for Future Research 

The study has been a success in projecting and predicting the COVID-19 outbreak in Kisii 

County, early mitigation of the disease can help in eradicating the virus in case of an outbreak 

to prevent a surge. 

Since the disease is highly transmissible among individuals the county government should 

increase COVID-19 screening processes as well as encourage the natives to adhere to the safety 

protocols.    

This study has laid a foundation for future research in the area. In the future, a study that can 

include   the rate of COVID-19 virus mutation and its impacts is recommended. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.iprjb.org/


International Journal of Natural Sciences  

ISSN: 2958-9126 (Online) 

Vol.4, Issue 2, No.2. pp. 21 - 32, 2024 

                                                                                                                              www.iprjb.org 

32 
 

REFERENCES 

[1] Ramirez, V. B., & Biggers, A. (2020). What is R0? Gauging contagious 

infections. Healthline. 

 [2] Gussen, B. F. (2021). On the Constitutionality of Hard State Border Closures in 

Response to the COVID-19 Pandemic. JL & Health, 35, 1. 

 [3] Voegel, C. J. (2022). The Syringe That Drips Money: How Title VII Affects Employer-

Mandated Vaccinations in the Manufacturing Sector. Ind. Health L. Rev., 19, 217. 

 [4] Lotfi, R., Kheiri, K., Sadeghi, A., & Babaee Tirkolaee, E. (2022). An extended robust 

mathematical model to project the course of COVID-19 epidemic in Iran. Annals of 

Operations Research, 1-25. 

 [5] Pant & Upadhyay, 2020; WHO, 2020, (Chavez et al., 2020; Nomura et al., 2021) 

(Sarwar Zaman & Al Shahrani, 2021; Verma et al., 2021). Adetifa et al., 2021). 

 [6] Khan, N., Naushad, M., Fahad, S., Faisal, S., & Muhammad, A. (2020). Covid-2019 and 

world economy. Journal of Health Economics, Forthcoming. 

 [7] Lundstrom, K. (2020). Application of viral vectors for vaccine development with a 

special emphasis on COVID-19. Viruses, 12(11), 1324. 

 [8] Gu, E., & Li, L. (2020). Crippled community governance and suppressed 

scientific/professional communities: a critical assessment of failed early warning for the 

COVID-19 outbreak in China. Journal of Chinese governance, 5(2), 160-177. 

 [9] Vanaparthy, R., Mohan, G., Vasireddy, D., & Atluri, P. Le Infezioni in Medicina, n. 3, 

328-338, 2021. 

 [10] Chavda, V. P., Bezbaruah, R., Athalye, M., Parikh, P. K., Chhipa, A. S., Patel, S., & 

Apostolopoulos, V. (2022). Replicating Viral Vector-Based Vaccines for COVID-19: 

Potential Avenue in Vaccination Arena. Viruses, 14(4), 759. 

 [11] Mohamed, N. A., Abou-Saleh, H., Mohamed, H. A., Al-Ghouti, M. A., Crovella, S., & 

Zupin, L. (2022). Think like a Virus: Toward Improving Nanovaccine Development 

against SARS-CoV-2. Viruses, 14(7), 1553. 

 [12] Galdiero, M., Galdiero, M., Folliero, V., Zannella, C., De Filippis, A., Mali, A., ... & 

Franci, G. (2021). SARS-CoV-2 vaccine development: Where are we. Eur Rev Med 

Pharmacol Sci, 25(6), 2752-84. 

 [13] Fernandez-Garcia, L., Pacios, O., González-Bardanca, M., Blasco, L., Bleriot, I., 

Ambroa, A., ... & Tomás, M. (2020). Viral related tools against SARS-CoV-

2. Viruses, 12(10), 1172. 

 [14] Petkar, K. C., Patil, S. M., Chavhan, S. S., Kaneko, K., Sawant, K. K., Kunda, N. K., & 

Saleem, I. Y. (2021). An overview of nanocarrier-based adjuvants for vaccine 

delivery. Pharmaceutics, 13(4), 455. 

 [15] Ramirez, V. B., & Biggers, A. (2020). What is R0? Gauging contagious 

infections. Healthline. 

 [16] Gussen, B. F. (2021). On the Constitutionality of Hard State Border Closures in 

Response to the COVID-19 Pandemic. JL & Health, 35, 1. 

 

http://www.iprjb.org/

