Journal of
 Statistics and Acturial Research (JSAR)

SUM RULES FOR JACOBI MATRICES AND THEIR APPLICATIONS TO SPECTRAL THEORY

Dr Bashir Eissa Mohammed Abdelrahman
$\begin{array}{llllllll}0 & 5 & 10 & 15 & 20 & 25 & 30 & 35\end{array}$

SUM RULES FOR JACOBI MATRICES AND THEIR APPLICATIONS TO SPECTRAL THEORY

Dr Bashir Eissa Mohammed Abdelrahman
PhD in mathematic
Email: bashireissa@yahoo.com

Abstract

The study discusses the proof of and symmetric application of Cases sum rules for Jacobi matrices. Of special interest is a linear combination of these sum rules which have strictly positive terms. The complete classification of the spectral measure of all Jacobi matrices J for which J-J0 is Hilbert space -Achmidt. The study shows the bound of a Jacobi matrix. The description for the point and absolutely continuous spectrum, while for the singular continuous spectrum additional assumptions are needed. The study shows and prove a bound of a Jacobi matrix. And we give complete description for the point and absolutely continuous spectrum, while for the singular continuous spectrum additional assumptions are needed, we prove a characterization of a characteristic function of a row contraction operator and verify its defect operator. We also prove a commutability of an operator of this row contraction.

Keywords: Sum Rules, Jacobi matrices, Spectral Theory

Section (1-1): Spectral Form for Jacobi Matrices:

The case of some rules and were efficiently used to relate properties of elements of a Jacobi matrix of certain class with its special properties. For instance spectral data of Jacobi matrices being a Hilbert space-Schmeidt perturbation of the free Jacobi matrix were characterization [42,101,135] and we suggest a modification of the method that permits us to work with higher order sum rules. We obtain sufficient conditions for a Jacobi matrix to satisfy certain constraints on its spectral measure. We consider a Jacobi matrix [129,124].

$$
J=J(a, b)=\left[\begin{array}{ccc}
b_{0} & a_{0} & 0 \\
a_{0} & b_{1} & \cdots \\
\vdots & & \vdots \\
\ddots
\end{array}\right]
$$

Where $a=\left\{a_{k}\right\}, a_{k>0}$ and $b=\left\{b_{k}\right\}, b_{k} \in \square$, We assume that J is a compact perturbation of the free Jacobi matrix J_{0}

$$
J_{0}=\left[\begin{array}{ccc}
0 & 1 & 0 \tag{1}\\
1 & 0 \cdots \\
\vdots & \because \ddots
\end{array}\right]
$$

A scalar spectral measure $\delta=\delta(J)$ is defined by the formula $\left((J-z) e_{0}, e_{0}\right)=\int \frac{d \delta(x)}{x-z}$ with $z \in \square \backslash \square$, the absolutely continuous spectrum $\delta_{a c}(J)$ of J fills in $[-2,2]$ and the discrete spectrum consist of two sequences $\left\{x_{j}^{ \pm}\right\}$with properties $\quad \bar{x}_{j}<-2, \quad \bar{x}_{j} \rightarrow 2$ and $x_{j}^{+}>2, \quad x_{j}^{+} \rightarrow 2$
Let $\partial_{a}=\left\{a_{k}-a_{k-1}\right\}$ for a given a and $k \in N$ we construct a sequence $\gamma_{k}(\alpha)$ by formula $\gamma_{k}(a)_{j}=\alpha_{j}^{k}-\alpha_{j} \ldots \alpha_{j+k-1}$ where $\alpha=a-1$ and 1 is a sequence of units

Theorem (1-1-1) [87]:

Let $J=J(a, b)$ be a Jacobi matrix described above. If
(i) $a-1, b \in L^{m+1}, \partial_{a}, \partial_{b} \in L^{2}$
(ii) $\gamma_{k}(a) \in L^{\prime}, k=3,[(m+1) / 2]$

Then

$$
\begin{align*}
& \left(i^{\prime}\right) \int_{-2}^{2} \log \delta^{\prime}(x) \cdot\left(4-x^{2}\right)^{m-\frac{1}{2}} d x>-\infty \tag{2}\\
& \left(i i^{\prime}\right) \sum_{j}\left(x^{ \pm 2}-4\right)^{m+1 / 2}<\infty \tag{3}
\end{align*}
$$

When $m=1$ the theorem gives the fact of theorem (1-1-1)

Proof:

Define $\phi_{m}(J)$ as $\varphi_{m}(J)=\varphi_{m}(\delta)=\varphi_{m, 1}(\delta)+\varphi_{m, 2}(\delta)$

$$
=\frac{1}{2 \pi} \int_{-2}^{2} \log \frac{1}{\delta^{\prime}(x)} \cdot\left(4-x^{2}\right)^{m-\frac{1}{2}} d x+\sum_{j} G_{m}\left(x_{j}^{ \pm}\right) .
$$

We have to show that $\phi_{m}(J)<\infty$. We put $a_{N}=\left\{\left(a_{N}\right)_{k}\right\}$ and $a_{N}^{\prime}=\left\{\left(a_{N}^{\prime}\right)_{k}\right\}$, where

$$
\left(a_{N}\right)_{k}=\left\{\begin{array}{lc}
a_{k}, & k \leq N, \\
1, & k<N,
\end{array} \quad\left(a_{N}^{\prime}\right)_{k}=\left\{\begin{array}{lc}
1, & k \leq N \\
a_{k}, & k<N
\end{array}\right.\right.
$$

Define sequences b_{N}, b_{N}^{\prime} in the same way (of course, with 1 ' s replaced by 0 s).
Let $J_{N}=J\left(a_{N}, b_{N}\right)$. As we readily see, $\dot{a}_{N}-1, b_{N} \rightarrow 0, \quad \partial a_{N}^{\prime}, \quad \partial b_{N}^{\prime} \rightarrow 0$, and $\gamma_{k}\left(a_{N}^{\prime}\right) \rightarrow 0$ in corresponding norms, as $N \rightarrow \infty$ by the Lemma
(1-1-4) below, we have for $N^{\prime}=N-m$

$$
\begin{aligned}
& \left|\psi_{m}(J)-\psi_{m}\left(J_{N}\right)\right| \leq \psi_{m}\left(a_{N^{\prime}}^{\prime}, b_{N^{\prime}}\right) \leq C_{1}\left(\left\|a_{N^{\prime}}^{\prime}-1\right\|_{m+1}+\left\|b_{N^{\prime}}\right\|_{m+1}\right. \\
& \left.+\left\|\delta a_{N^{\prime}}\right\|_{2}+\left\|\delta b_{N^{\prime}}\right\|_{2}+\sum_{k}\left\|\gamma_{k}\left(d_{N^{\prime}}\right)\right\|_{1}\right)
\end{aligned}
$$

or

$$
\psi_{m}\left(J_{N}\right) \rightarrow \psi_{m}(J), \text { as } \hat{N} \rightarrow \infty
$$

on the other hand $\left(J_{N}-z\right)^{-1} \rightarrow(J-z)^{-1}$ for $z \in \square \backslash \mathrm{R}$, and consequently $\delta_{N} \rightarrow \delta$ weakly $\phi_{m, 1}(\delta) \leq \lim _{N}$ int $\phi_{m, 1}\left(\delta_{N}\right)$ and $\lim \phi_{m, 2}\left(\delta_{N}\right)=\phi_{m, 2}(\delta)$ we bound the latter quantity $\left|\psi_{m, 2}(J)\right|=\sum_{j} \mid G_{m}\left(x_{j}^{ \pm}\right) \leq C_{2}\left(\mid a-1\left\|_{m+1}^{m+1}+\right\| b \|_{m+1}^{m+1}\right)$ with some constant C_{2}. Summing up we obtain

$$
\varphi(\delta) \leq \lim _{N} \sup \varphi\left(\delta_{N}\right)=\lim _{N} \sup \psi\left(J_{N}\right)=\lim _{N \rightarrow \infty} \psi\left(J_{N}\right)=\psi(J)
$$

The proof is complete. It is easy to give simple conditions sufficient for $\gamma_{k}(a) \in L^{\prime}$ for the instance put
$\left(A_{k}(a)\right)_{j}=\alpha_{j+1}+\ldots+\alpha_{j+k-1}-(k-1) \alpha_{j}$, then relations $a-1 e L^{m+1}, \partial_{a} \in L^{2}$ and $A_{k}(a) \in L^{2(k, m)}$ $2(k, m)=(m+1)!(m+2-k)$ imply that $\gamma_{k}(a) \in L^{\prime}$. In particular we have the following corollary.

Corollary (1-1-2) [87]:

Theorem (1-1-1) holds if conditions (i), (ii) are replaced with $A_{k}(a) \in L^{2(k, m)}, 2(k, m)=(m+1) /(m+2-k)$, where $k=\delta,\left[\frac{m+1}{2}\right]$ we observe that relations (i) and (ii) are trivially true in the case of discrete Schrödinger operator i.e., when $J=J(1, b)$.
Corollary (1-1-3) [87]:
Then inequalities $\left(i^{\prime}\right)$ and $\left(i i^{\prime}\right)$ let hold $J=J(1, b)$. If $b \in L^{m+1}, \partial b \in L^{2}$, the corollary is still true if $b \in L^{m+2}, m$ being even. The proof is a sum rule of a special type. First we obtain it assuming rank $\left(J-J_{0}\right)<\infty$. Applying methods we see that

$$
\frac{1}{2 \pi} \int_{-2}^{2} \log \frac{1}{\delta^{\prime}(x)} \cdot\left(4-x^{2}\right)^{m-\frac{1}{2}} d x+\sum_{j} G_{m}\left(x_{j}^{ \pm}\right)=\psi_{m}(J)
$$

Where $\psi_{m}(J)=\psi_{m}(a, b)$ and $G_{m}(x)=(-1)^{m+1} C_{0}\left(x^{2}-4\right)^{m+\frac{1}{2}}+o\left(x^{2}-4\right)^{m+\frac{3}{2}}$ with $x \in R \backslash[-2,2], C_{0}$ being a positive constant. where

$$
\begin{equation*}
\psi_{m}(J)=\operatorname{tr}\left\{\sum_{k=1}^{m} \frac{(-1)^{k+1}}{2^{2 k+1} k}\left(J^{2 k}-J_{0}^{2 k}\right)-\frac{(2 m-1)!!}{(2 m)!!} \log A\right\} \tag{4}
\end{equation*}
$$

Where $A=\operatorname{diag}\left\{a_{k}\right\}$ and $\widetilde{C}_{m}^{k}=\frac{m!!}{(m-k)!!k!!}$. Notation $k!!$ is used for "even" or "odd" factorials.

Lemma (1-1-4) [5]:

Let $J=J(a, b)$ we have

$$
\begin{equation*}
\left|\psi_{m}(J)\right| \leq C_{1}\left(\|a-1\|_{m+1}+\|b\|_{m+1}+\left\|\partial_{a}\right\|_{2}+\|\partial b\|_{2}+\sum_{k=3}^{[(m+1) / 2]}\left\|\gamma_{k}(a)\right\|_{1}\right) \tag{5}
\end{equation*}
$$

Where C_{1} depends on T only. Above, norms $\|.\|_{p}$ refer to the standard L^{p} - space norms. We begin with considering expressions $\operatorname{tr}\left(J^{2 k}-J_{0}^{2 k}\right)$ arising in (4). Defining $V=J-J_{0}=J(a-1, b)$ we have

$$
\operatorname{tr}\left(J^{2 k}-J_{0}^{2 k}\right)=\operatorname{tr} \sum_{p=1}^{2 k} \sum_{i+\cdots+t_{l}=2 k-p} V J_{0}^{i} \ldots V J_{0}^{i p}
$$

We prove the lemma in steps.

Proof:

First we bounded summands corresponding to $P=\frac{m+1}{2}, m$ in [87]. We get $\left|\operatorname{tr}\left(V^{p} F_{p}\left(J_{0}\right)\right)\right| \leq\left\|V^{p} F_{p}\left(J_{0}\right)\right\|_{s_{1}} \leq\left\|F_{p}\left(J_{0}\right)\right\|,\left\|V^{p}\right\|_{s_{1}}$ and for these $P^{\prime s}$

$$
\begin{equation*}
\left\|V^{p}\right\|_{s_{1}} \leq C_{10}\left\|V^{m+1}\right\|_{s_{1}} \leq C_{10}\left(\|a-1\|_{m+1}^{m+1}+\|b\|_{m+1}^{m+1}\right) \tag{6}
\end{equation*}
$$

With the constant depending on $\|V\|$. Similarly $\left|\operatorname{tr} \alpha^{p}\right| \leq C_{11} \| a-\left.1\right|_{m+1} ^{m+1}$, let $p=3, m$ now. As we already mentioned in [134]

$$
V^{p}=\sum_{j=0}^{p}\left(S^{i} p_{p, j}(a, b)+p_{p, j}(a, b) \bar{S}^{j}\right) .
$$

It is easy to show by induction that the polynomials $P_{p, p}(a, b)$ are particularly simple. Namely $P_{p, p}(a, b)=\alpha \alpha_{(1)} \ldots \alpha_{(p-1)}$ yields that

$$
\begin{aligned}
\operatorname{tr} V^{p} F_{p}\left(J_{0}\right) & =(-1)^{p} \frac{(2 m-1)!!}{2 p(2 m)!!} \operatorname{tr} V^{p} J_{0, p} \\
& =(-1)^{p} \frac{(2 m-1)!!}{2 p(2 m)!!} \operatorname{tr}\left(P_{p, p}(a, p)+P_{p, p}(a, b)_{p}\right) \\
& =(-1)^{p} \frac{(2 m-1)!!}{2 p(2 m)!!} \sum_{j} \alpha_{j} \alpha_{j+1} \ldots \alpha_{j+(p-1)}
\end{aligned}
$$

Since $\operatorname{tr} V^{p} J_{0, s}=0$ for $s \geq p+1$. Hence $\operatorname{tr}\left(V^{p} F_{p}\left(J_{0}\right)+(-1)^{p+1} \frac{(2 m+1)!!}{p(2 m)!!} \alpha^{p}\right)$

$$
\begin{align*}
& =(-1)^{p+1} \frac{(2 m-1)!!}{2 p(2 m)!!} \sum_{j} \alpha_{j}^{p}-\alpha_{j} \alpha_{j+1} \ldots \alpha_{j+(p-1)} \text { and we obtain that } \\
& \left|\operatorname{tr}^{p} F_{p}\left(J_{0}\right)+(-1)^{p+1} \frac{(2 m-1)!!}{2 p(2 m)!!} \alpha^{p}\right| \leq C_{12}\left\|\gamma_{p}(a)\right\|_{1} \tag{7}
\end{align*}
$$

Where C_{12} depends on p, m and sequences $\gamma_{k}(a)$ are defined in [134]
Observe that $\gamma_{p}(a)=0$ when $p=1$. Furthermore we have for $p=2$ that

$$
\begin{array}{r}
\sum_{j}\left(\alpha_{j}^{2}-\alpha_{j} \alpha_{j+1}\right)=\frac{1}{2} \sum_{j}\left(\alpha_{j}^{2}-2 \alpha_{j} \alpha_{j+1}+\alpha_{j+1}^{2}\right) \\
=\frac{1}{2} \sum_{j}\left(\alpha_{j}-\alpha_{j+1}\right)^{2}=\frac{1}{2}\|\partial a\|_{2}^{2}
\end{array}
$$

So the left hand-side of (7) for $p=2$ can be estimated by $C_{13}\|\partial a\|_{2}^{2}$. It is also clear that inclusion $\alpha \in L^{m+1}$ and $\quad \partial a \in L^{2} \quad$ give that $\quad \gamma_{p}(a) \in L^{\prime} \quad$ for $\quad p>m / 2+1$. Indeed we have $\alpha^{p}-\alpha \alpha_{(1)} \ldots \alpha_{p-1}=\sum_{k=1}^{p} \alpha^{p-k}\left(\alpha-\alpha_{p-k}\right) \alpha_{(p-(k-1)) \ldots} \alpha_{p-1}$
The terms in the latter sum look like $\alpha\left(i_{1}\right) \ldots \alpha_{(2 p-1)}\left(\alpha-\alpha_{\left(i_{p}\right)}\right)$ for some $i=\left(i_{1}, \ldots, i_{p}\right)$. Obviously $\alpha-\alpha_{i p}=a-a_{i p}=\partial a \in L^{2}$. Applying the Holder inequality $\sum_{k} a_{k} \ldots a_{p+k} \leq \sum_{k}\left(\sum_{j=1}^{p} \frac{1}{q_{j}} a_{j, k}^{q_{j}}\right)$ with $a_{j, k}=\left|\left(\alpha_{i_{j}}\right)_{k}\right|, q_{j}=2(p-1)$ for $j=1, p-1$ and $a_{p, k}=\left|\left(\alpha-\alpha_{i_{p}}\right)_{k}\right|, q_{p}=\frac{1}{2}$ we get that

$$
\left\|\alpha^{p}-\alpha \alpha_{(1)} \ldots \alpha_{(p-1)}\right\|_{1} \leq C_{14}\|\partial a\|_{2}^{2}+\|\alpha\|_{2(p-1)}^{2(p-1)}
$$

Which is finite for $p>m 2+1$. Thus gathering the above argument which is complete(see [134])we complete the proof of the lemma

Lemma (1-1-5) [87]:

Let $i=\left(i_{1}, \ldots, i_{p}\right)$ and $\sum_{s} i_{s}=n$ then

$$
\begin{aligned}
& V J_{0}^{i_{1}} \ldots V J_{0}^{i_{p}}=V^{p} J_{0}^{n}+\sum_{\substack{L_{1}+L_{2}+L_{3}=p \\
p_{1}+p_{2}+p_{3}=n}} C_{1, p} J_{0}^{p_{1}} V^{L_{1}}\left[V^{L_{2}}, J_{0}^{p_{2}}\right] V^{L_{3}} J_{0}^{p_{3}} \\
& +\sum_{i}^{m, p_{i}} A_{k}\left[V, J_{0}\right] B_{k}\left[V, J_{0}\right] C_{k}
\end{aligned}
$$

Where $p=\left(p_{1}, p_{2}, p_{3}\right), 1=\left(L_{1}, L_{2}, L_{3}\right)$ and A_{k}, B_{k}, C_{k} are some bounded operators

Lemma (1-1-6) [87]

$$
\text { Let } \sum_{s} i=2 k-p \text { we have } \mid t r\left(V J_{0}^{i_{1}} \ldots V J_{0}^{i_{p}}-V^{p} J_{0}^{k-p}\right) \leq C_{3}\left(\|\partial a\|_{2}+\|\partial b\|_{2}\right)
$$

With C_{3} depending on $\|V\|$ only. The lemma exactly bounded, we may assume that operators V and J_{0} to commute we estimating $\psi_{m}(J)$

$$
\begin{equation*}
\psi_{m}^{\prime}(J)=\operatorname{tr}\left\{\sum_{p=1}^{2 m} V^{p} F_{p}\left(J_{0}\right)-\frac{(2 m-1)!!}{(2 m)!!} \log (I+\tilde{\alpha})\right\} \tag{8}
\end{equation*}
$$

Where $\tilde{\alpha}=\operatorname{diag}\left\{a_{k}\right\}=A-I$ and

$$
F^{p}\left(J_{0}\right)=\sum_{k=[(p+1) / 2]}^{m} \frac{(-1)^{k+1}}{2^{2 k+1}} \widetilde{C}_{2 m-1}^{2 k-1} C_{2 k}^{p} J_{0}^{2 k-p}
$$

Here C_{k}^{p} is a usual binomial coefficient, observe that for $p \geq m+1$ we have

$$
\left|\operatorname{tr}\left(V^{p} F_{p}\left(J_{0}\right)\right)\right| \leq\left\|F_{p}\left(J_{0}\right)\right\|\left\|V^{p}\right\|_{\delta_{1}} \leq C_{4}\left(\|a-1\|_{m+1}^{m+1}+\|b\|_{m+1}^{m+1}\right)
$$

Where $\|.\|_{\delta_{1}}$ is the norm in the class of nuclear operators, hence it remains to bound the first m terms in (8) we have

$$
\log (1+\tilde{\alpha})=\sum_{p=1}^{2 m} \frac{(-1)^{p+1}}{p} \tilde{\alpha}+o\left(\tilde{\alpha}^{2 m+1}\right)
$$

Set $J_{0, p}$ to be a symmetric matrix with 1's on p-th auxiliary diagonals and o's elsewhere the following lemma holds.
Lemma (1-1-7) [87]:
We have $\quad F_{p}\left(J_{0}\right)=(-1)^{p+1} \frac{(2 m-1)!!}{2 p(2 m)!!} J_{0, p}$
Combining this with explicit form of V^{p} and the series expansion for $\log (I+\tilde{\alpha})$ we get the required bound (7).

Section (1-2): Spectral Properties of Self-adjoint Extensions

Let A be a closed symmetric operator on a separable Hilbert space h. If A has equal deficiency indices $n_{ \pm}(A)=\operatorname{dim}(h \square \operatorname{ran}(A \pm i I))$, then A has a lot of self-adjoint extensions. These self-adjoint extensions can be labeled by the so-called Weyl function $M($.$) [82, 83, and$ 84]. The generalization is based on concept of a boundary triple $\Pi=\left\{H, \Gamma_{0}, \Gamma_{1}\right\}$ for A^{*} being an abstract generalization of the Green's identity. Here \mathscr{H} is a separable Hilbert space with dim $(\mathscr{H})=n_{ \pm}(A)$ and Γ_{0} and Γ_{1} are linear mapping from $\operatorname{dom}\left(A^{*}\right)$ to \mathscr{H} so that Green's identity is satisfied [108,119].

The problem is the following. Let $M($.$) be the Weyl function of a certain self-adjoint$ extensions A_{0} of A, introducing the associated scalar Weyl function $M_{h}()=.(M() h, h),. h \in \mathscr{H}$ is it possible to localize the different spectral subsets of A_{0} knowing the boundary values
$M_{h}(x+i 0), x \in \square$ of the associated scalar Weyl function. Let \mathscr{H} be separable Hilbert space. Recall that an operator function $F($.$) with values in [\mathcal{H}]$ is said to be a Hirglotz or Nevanlina function or R-function if holomorphic in \square_{+}and for every $z \in \square_{+}$the operator $F(z)$ in H is dissipative i.e., $\quad S m(F(z))=\frac{\left(F(z)-F(z)^{*}\right)}{2 i} \geq 0$. In the following we prefer the notion Rfunction. The class of R-functions with values in $[\mathscr{H}]$ is denoted by $R_{\mathcal{H}}$.If $F(.) \in\left(R_{\mathcal{H}}\right)$ then there exist bounded self-adjoint operator L in K , a bounded non-negative operator $R \geq 0$ with $R \mid K \square \mathscr{H}=0$ such that

$$
\begin{equation*}
\left.F(z)=C_{0}+C_{1} z+R^{\frac{1}{2}}\left(I_{k}+z L\right)(L-z)^{-1} R^{\frac{1}{2}} \right\rvert\, \mathscr{H}, \quad z \in \square_{+} \tag{9}
\end{equation*}
$$

Denoting by $E_{L}($.$) the spectral measure of the self-adjoint operator L$ one immediately obtains from (9) the representation

$$
\begin{equation*}
F(z)=C_{0}+C_{1} z+\int_{-\infty}^{\infty}\left(\frac{1}{t-z}-\frac{t}{1+t^{2}}\right) d \sum_{F}(t), z \in \square_{+} \tag{10}
\end{equation*}
$$

Where $\sum_{F}($.$) is an operator valued Borel measure on R$ given by

$$
\begin{equation*}
d \sum_{F}(t)=\left(1-t^{2}\right) R^{\frac{1}{2}} d E_{L}(.) R^{\frac{1}{2}}, t \in \square \tag{11}
\end{equation*}
$$

the measure $\sum_{F}($.$) is self-adjoint and obeys$

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \frac{1}{1+t^{2}} d \sum_{F}(t) \in[\mathscr{H}] \tag{12}
\end{equation*}
$$

In contrast to spectral measures of self-adjoint operators it is not necessary true that ran $\sum \delta_{1}$ is orthogonal to $\operatorname{ran}\left(\sum \delta_{2}\right)$ for adjoint Borel sets δ_{1} and δ_{2}.
However the measure $\sum_{F}($.$) is uniquely determined by the R-function F($.$) .$
The integral in (10) is understood in the strong sense in the following $\sum_{F}($.$) is called the spectral$ measure of $F($.$) defined by$

$$
\sum_{F}(t)=\left\{\begin{array}{l}
\sum_{F}(0, t): t>0 \tag{13}\\
0 \quad: t=0 \\
-\sum_{F}(t, 0): t<0
\end{array}\right.
$$

The distribution function $\sum_{F}($.$) is strongly left continuous and satisfies the condition$

$$
\sum_{F}(t)=\sum_{F}(t)^{*}, \sum_{F}(s) \leq \sum_{F}(t),-\infty<s<t<\infty
$$

The distribution function $\sum_{F}($.$) is called the spectral function of F($.$) .$
We note that the spectral function $\sum_{F}($.$) can be obtained by the Stieltjes transformation:$

$$
\begin{equation*}
\frac{1}{2} \sum_{F}(t+0)+\sum_{F}(t)-\frac{1}{2} \sum_{F}(s+0)+\sum(s)=w-\lim _{y \rightarrow 0} \frac{1}{\pi} \int_{s}^{t} S m(F(x+i y)) d x, \quad t . s \in \square \tag{14}
\end{equation*}
$$

Where it is used that the spectral function is strongly left continuous.
A will always denote a closed symmetric operator with equal deficiency indices $n_{+}(A)=n_{-}(A)$ [97,140,147,148].
We can assume that A is simple. This means that A has no self-adjoint parts. Definition (1-2-1) [96]:
A triple $\Pi=\left\{\neq, \Gamma_{0}, \Gamma_{1}\right\}$ consisting of an auxiliary Hilbert space \mathcal{H} and linear mapping $\Gamma_{i}: \operatorname{dom}\left(A^{*}\right) \rightarrow \mathcal{H}_{i}, i=0,1$ is called a boundary triple for the adjoint operator $A^{*} \rightarrow \mathcal{H}, i=0,1$ is called a boundary triple for the adjoint operator A^{*} of A if
(i) The second Green's formula takes place

$$
\begin{equation*}
\left(A^{*}, f\right)-\left(f, A^{*} \mathrm{~g}\right)=\left(\Gamma_{1} f, \Gamma_{0} \mathrm{~g}\right)-\left(\Gamma_{0} f, \Gamma_{1} \mathrm{~g}\right), \quad f, \mathrm{~g} \in \operatorname{dom}\left(A^{*}\right) \tag{15}
\end{equation*}
$$

(ii) The mapping $\Gamma=\left\{\Gamma_{0}, \Gamma_{1}\right\}: \operatorname{dom}\left(A^{*}\right) \rightarrow \mathcal{H} \oplus \mathscr{H}$ is surjective

Definition (1-2-2) [96]:

(i) A closed linear relation θ in \mathcal{H} is closed subspace θ of $\mathcal{H} \oplus \mathscr{H}$.
(ii) The closed linear relation θ is symmetric if $\left(\mathrm{g}_{1}, f_{2}\right)-\left(f_{1}, \mathrm{~g}_{2}\right)=0$ for all

$$
\left\{f_{1}, g_{1}\right\},\left\{f_{2}, g_{2}\right\} \in \theta
$$

(iii) The closed linear relation θ is self-adjoint if it is maximal symmetric.

Definition (1-2-3) [96]:

Let $\left\{\mathcal{H}_{4}, \Gamma_{0}, \Gamma_{1}\right\}$ be a boundary triple for A^{*}
(i) for every self-adjoint relation θ in \mathcal{H} we put

$$
\begin{equation*}
D^{\theta}\left\{f \in \operatorname{dom}\left(A^{*}\right): \Gamma_{0} f, \Gamma_{1} f \in \theta\right\}, A^{\theta}=A^{*} \mid D^{\theta} \tag{16}
\end{equation*}
$$

(ii) In particular we set $A_{i}=A^{\theta_{i}}, i=0,1$, if $\theta_{i}, i=0,1$
(iii) If $\theta=G(B)$ where B is an operator on \mathcal{H}, then we set $A^{B} A^{\theta}$

Proposition (1-2-4) [96]:

Let $\left\{\mathscr{H}, \Gamma_{0}, \Gamma_{1}\right\}$ be a boundary triple for A^{*} then for every self-adjoint relation θ in \mathcal{H} the operator A^{θ} given by definition (1-2-3) is self-adjoint extension of A the mapping $\theta \mapsto A^{\theta}$ from the set of self-adjoint extensions in H_{H} onto the set $E x t_{A}$ of self-adjoint extensions of A is
bijective. It is well known that Weyl function are an important tool in the direct and inverse spectral theory of singular Sturm-Liouville operators.

Definition (1-2-5) [96]:

Let $\left\{\mathcal{H}_{4}, \Gamma_{0}, \Gamma_{1}\right\}$ be a boundary triple for the operator A^{*}. The Weyl function of A corresponding to the boundary triple $\left\{\mathscr{H}, \Gamma_{0}, \Gamma_{1}\right\}$ is the unique mapping
$M():. \rho\left(A_{0}\right) \rightarrow \mathcal{H}$ satisfying

$$
\begin{equation*}
\Gamma_{1} f_{z}=M(z) \Gamma_{0} f_{z}, \quad f_{z} \in N_{z}, \quad z \in \rho\left(A_{0}\right) \tag{17}
\end{equation*}
$$

Where $N_{z}=\operatorname{ker}\left(A^{*}-z I\right)$ above implicit definition of the Weyl function is correct and the Weyl function $M($.$) is a R-function obeying$

$$
o \in \rho(\operatorname{Sm}(M(i)))
$$

Definition (1-2-6)[96]:
A closed linear relation θ in \mathcal{H} is called boundedly invertible if the inverse relation $\theta^{-1}=\{\mathrm{g}, f\} \in \mathscr{H} \times \mathscr{H}:\{f, \mathrm{~g} \in \theta\}$ is the graph of a bounded operator defined on \mathscr{H}. we say $\lambda \in \square$ belong to the resolvent set $\rho(\theta)$ if the closed linear relation $\theta-\lambda T=\{\{f, \mathrm{~g}-\lambda f\}:\{f, \mathrm{~g}\} \in \theta\}$ is boundedly invertible.

Proposition (1-2-7) [96]:

Let A be a simple closed densely defined symmetric operator in h. Suppose that $\left\{\mathcal{H}_{4}, \Gamma_{0}, \Gamma_{1}\right\}$ is a boundary triple for $A^{*} M($.$) is the corresponding Weyl function, \theta$ a self-adjoint relation in \mathscr{H} and $\lambda \in \rho\left(A_{0}\right)$. Then the following holds.
(i) $\lambda \in \rho\left(A^{\theta}\right)$ if and only if $0 \in \rho(\theta-M(\lambda))$.
(ii) $\lambda \in \delta_{\tau}\left(A^{\theta}\right)$ if and only if $0 \in \delta_{\tau}(\theta-M(\lambda)), \tau=p, c$

If A is a simple symmetric operator then the Weyl function $M($.$) determines the pair$ $\left\{A, A_{0}\right\}$ up to unitary equivalence. We shall often say that $M($.$) is the Weyl function of the pair$ $\left\{A, A_{0}\right\}$ or simply of A_{0}. We can prove $M_{1}($.$) and M_{2}($.$) with values in \left[\mathcal{H}_{1}\right]$ and $\left[\mathcal{H}_{2}\right]$ are connected via

$$
\begin{equation*}
M_{2}(z)=K^{*} M_{1}(z) K+D \tag{18}
\end{equation*}
$$

Where $D=D^{*} \in\left[\mathcal{H}_{2}\right]$ and $K \in\left[\mathcal{H}_{2}, \mathcal{H}_{1}\right]$ is boundedly invertible. With each boundary triple we can associate a so-called γ-field γ (.) corresponding to π is defined by

$$
\begin{equation*}
\gamma(z)=\left(\Gamma_{0} \mid N_{z}\right)^{-1}: \mathscr{H} \rightarrow N_{2}, z \in \rho\left(A_{0}\right) \tag{19}
\end{equation*}
$$

One can easily check that

$$
\begin{equation*}
\gamma(z)=\left(A_{0}-z_{0}\right)\left(A_{0}-z\right)^{-1} \gamma\left(z_{0}\right), z \cdot z_{0} \in \rho\left(A_{0}\right) \tag{20}
\end{equation*}
$$

And consequently $\gamma($.$) is a \gamma$-field. The γ-field and the Weyl function $M($. are related by

$$
\begin{equation*}
M(z)-M\left(z_{0}\right)^{*}=\left(z-\bar{z}_{0}\right) \gamma\left(z_{0}\right)^{*} \gamma(z), \quad z, z_{0} \in \rho\left(A_{0}\right) \tag{21}
\end{equation*}
$$

The relation (21) means the $M($.$) is a \theta_{2}$-function of a pair $\left\{A, A_{0}\right\}$.Further we note that if A is simple then $N_{z}, z \in \rho\left(A_{0}\right)$ is generating with respect to A_{0} too .
Let μ be a Borel measure on \square. A support of μ is a set S such that $\mu(\square \backslash S)=0$ we note that $S \subseteq \tilde{S}$ implies that \tilde{S} is a support too. Measures μ and v on \Re are called orthogonal if some of their supports are disjoint. The topological support $S(\mu)$ of μ is the smallest closed set which is a support of μ.According to the Lebesgue-Jordan\decomposition $\mu=\mu_{s}+\mu_{a c}, \mu_{s}=\mu_{p p}+\mu_{s c}$. Where $\mu_{s}, \mu_{p p}, \mu_{s c}$ and are the corresponding singular pure point, singular continuous and absolutely continuous measures of μ respectively. We set
$S_{T}(\mu)=S\left(\mu_{T}\right), \quad T=s, p p, s c, a c$ the set $S_{s}(\mu), S_{p p}(\mu), S_{s c}(\mu), S_{a c}(\mu)$ are closed and called singular, pure point, singular continuous and absolutely continuous supports of μ, we denote that the closed supports $S_{s}(\mu), S_{p p}(\mu), S_{a c}(\mu)$ and $S_{s c}(\mu)$ are not generally mutually disjoint to obtain mutually disjoint supports we introduce the following sets .

$$
\begin{align*}
& S_{0}^{\prime}(\mu)=\{t \in \square: d \mu(t) d t \text { existsand } d \mu(t)=\infty\} \tag{22}\\
& S_{p p}^{\prime}(\mu)=\{t \in \square: \mu(\{t\}) \neq 0\} \tag{23}\\
& S_{s c}^{\prime}(\mu)=\left\{t \in \square: d \mu(t) d(t) \text { exists } \frac{d \mu(t)}{d t}=\infty \text { and } \mu(t)=0\right\} \tag{24}\\
& \quad S_{a c}^{\prime}(\mu)=\left\{t \in \square: \frac{d \mu(t)}{d t} \text { exists and } 0<d \mu(t) / d t<\infty\right\} \tag{25}
\end{align*}
$$

Where the distribution function $\mu($.$) is similar to (13) defined by it turns out that. Since the sets$ $S_{T}^{\prime}(\mu), T=s, p p, s c$ are of Lebesgue measure zero and mutually disjoint we find that for any Borel set $\chi \subseteq R$ one has

$$
\begin{equation*}
\mu\left(\chi \cap S_{T}^{\prime}(\mu)\right)=\mu_{T}(\chi), T=s, p p, s c, a c \tag{26}
\end{equation*}
$$

The sets $S_{s}^{\prime}(\mu), S_{p p}^{\prime}(\mu), S_{s c}^{\prime}(\mu)$, and $S_{a c}^{\prime}(\mu)$ singular pure point ,singular continuous and absolutely continuous supports of μ respectively. We note that

$$
\begin{equation*}
S_{p p}(\mu)=\overline{S_{p p}^{\prime}(\mu)} \text { and } S_{\tau}(\mu) \subseteq \overline{S_{\tau}^{\prime}(\mu)} \subseteq S(\mu), \tau=s, s c, a c \tag{27}
\end{equation*}
$$

In general it is not possible to replace inclusion by equalities, let now $\sum($.$) be a measure with$ values in $\{\mathscr{H}\}$ the measure $\sum($.$) admit a Lebesque- Jordan decomposition$ $\sum=\sum^{a c}, \sum^{s}, \sum^{p p}+\sum^{s c}$.As above the notation

$$
S_{s} \sum=S \sum^{s}, S_{p p} \sum=S \sum^{p p}, S_{s c} \sum=S\left(\sum^{s c}\right) \text { and } S_{a c}\left(\sum\right)=S\left(\sum_{a c}\right)
$$

stand for the singular pure point, singular continuous and absolutely. We get

$$
\begin{equation*}
S_{p}\left(\sum\right)=\{\tau \in \square\}: \sum(\{\tau\}) \neq 0 \tag{28}
\end{equation*}
$$

we have $S_{p}\left(\sum\right)=S_{p p}\left(\sum\right)$ and $\overline{S_{p}\left(\sum\right)}=S_{p p}\left(\sum\right)$ with each operator-valued measure $\sum($.$) we can associate a scalar measure \sum_{h}()=.\left(\sum() h, h.\right), h \in \mathscr{H}$. In the following we are interested in the problem whether the spectral properties of the operator valued measure $\sum($. can be characterized by a family of scalar measures. To this end let $\tau=\{h\}_{k=1}^{N}, \quad 1 \leq N \leq+\infty$ be a total set in H_{t} with we associate the family $\sum_{h_{k}}\{ \}_{k=1}^{N}$, of scalar measures. Let us introduce the following sets.

$$
\begin{align*}
& S_{s}^{\prime}\left(\sum_{;} \tau\right)=\cup_{k=1}^{N} S_{s}^{\prime}\left(\sum_{h_{k}}\right) \tag{29}\\
& S_{p p}^{\prime}\left(\sum_{;} \tau\right)=\cup_{k=1}^{N} S_{p p}^{\prime}\left(\sum_{h_{k}}\right) \tag{30}\\
& S_{s c}^{\prime}\left(\sum_{;} \tau\right)=\cup_{k=1}^{N} S_{s c}^{\prime}\left(\sum_{h_{k}}\right) \mid S_{p p}^{\prime}\left(\sum\right) \tag{31}\\
& S_{a c}^{\prime}\left(\sum_{;} \tau\right)=\cup_{k=1}^{N} S_{a c}^{\prime}\left(\sum_{h_{k}}\right) \mid S_{s}^{\prime}\left(\sum\right) \tag{32}
\end{align*}
$$

Lemma (1-2-8) [96]:

Let \mathscr{H} be a separable Hilbert space and $T=\left\{h_{k}\right\}_{k=1}^{N}, 1 \leq N \leq+\infty$ be a total set in \mathscr{H}. Then the sets $S_{s}^{\prime}\left(\sum_{;} \tau\right), S_{p p}^{\prime}\left(\sum_{;} \tau\right), S_{s c}^{\prime}\left(\sum_{;} \tau\right)$ and $S_{a c}^{\prime}\left(\sum_{;} \tau\right)$ are singular ,pure point ,singular continuous and absolutely continuous supports of $\sum($.$) respectively i.e.,$

$$
\begin{equation*}
\sum\left(\chi \cap S_{\tau}^{\prime}\left(\sum_{;} \tau\right)\right)=\sum^{\tau}(\chi), \tau=s, p p, s c, a c \tag{33}
\end{equation*}
$$

For any Borel set $\chi \subseteq R$. In particular the following relations hold.

$$
\begin{align*}
& S_{p}^{\prime} \sum=S_{p p}^{\prime}\left(\sum_{;} \tau\right) \text { and } \\
& S_{p}\left(\sum\right) \subseteq \overline{S_{p}^{\prime}\left(\sum_{;} \tau\right)} \subseteq S\left(\sum\right), \tau=s, s c, a c \tag{34}
\end{align*}
$$

Proof:

By the Lebesgue-Jordan decomposition one easily gets that for each $h \in \mathscr{H}$ We have

$$
\begin{equation*}
\left(\sum^{\tau}(\chi) h, h\right)=\sum_{h, \tau}(\chi), \tau=s, p p, s c, a c \tag{35}
\end{equation*}
$$

For any Borel set $\chi \in \mathscr{R}$ where $\sum_{h, T}($.$) arises from the Lebesgue-Jordan decomposition of the$ scalar measure $\sum_{h}($.$) . Let \tau=s$. Since mes $S_{s}^{\prime}\left(\sum_{;} \tau\right)=0$
We get

$$
\begin{equation*}
\left(\sum\left(\chi \cap S_{s}^{\prime}\left(\sum_{;} \tau\right)\right) h_{k}, h_{k}\right)=\sum_{h_{k}}\left(\chi \cap S_{s}^{\prime}\left(\sum_{;} \tau\right)\right)=\sum_{h_{k, s}}\left(\chi \cap S_{s}^{\prime}\left(\sum_{;} \tau\right)\right) \tag{36}
\end{equation*}
$$

For any $h_{k} \in \tau$ using (35),(36) and

$$
\sum_{h_{k, s}}\left(\chi \cap S_{s}^{\prime}\left(\sum_{;} \tau\right)\right)=\sum_{h_{k, s}}\left(\chi \cap S_{s}^{\prime}\left(\sum_{;} \tau\right) \cap S_{s}^{\prime} \sum_{h_{k}}\right)
$$

$$
\begin{equation*}
=\sum_{h_{s, s}}\left(\chi \cap S_{s}^{\prime}\left(\sum_{;} \tau\right)\right)=\sum_{h_{k, s}}(\chi) \tag{37}
\end{equation*}
$$

We find $\left(\sum\left(\chi \cap S_{s}^{\prime}\left(\sum_{;} \tau\right)\right) h_{k}, h_{k}\right)=\left(\sum^{s}(\chi) h_{k}, h_{k}\right)$ for any $h_{k} \in \tau$. Since τ is total we finally obtain $\sum\left(\chi \cap S_{s}^{\prime}\left(\sum_{;} \tau\right)\right)=\sum^{s}(\chi)$ for any Borel set $\chi \in \square$. Similarly we prove the statements for $T=p p, s c, a c$.

Let $x \in S_{p p}^{\prime} \sum_{;} \tau$. Then there is $h_{k} \in \tau$ such that $x \in S_{p p}^{\prime}\left(\sum_{h_{k}}\right)$. Hence $\sum_{h_{k}}(\{x\})=\left(\sum(\{x\}) h_{k}, h_{k}\right) \neq 0$ which yields $\sum(\{x\}) \neq 0$ or $x \in S_{p}\left(\sum\right)$, i.e. $S_{p p}^{\prime}\left(\sum \tau\right) \subseteq S_{p}\left(\sum\right)$ conversely if $x \in S_{p}\left(\sum\right)$ then there is a $h \in \mathscr{H}$ such that $\sum_{h}(\{x\}) \neq 0$. If this is not the case then for each $h_{k} \in T$ one has $\sum_{h}(\{x\})=\left(\sum(\{x\}) h_{k}, h_{k}\right)=0$. Since T is total this yields $\left(\sum(\{x\}) h_{k}, h_{k}\right)=\sum_{h}(\{x\})=0$
For each $h \in \mathscr{H}$ Contrary to the assumption. however, if there is a $h_{k} \in T$ such that ${ }^{`} \sum_{h_{k}}(\{x\}) \neq 0$ then $x \in S_{p p}^{\prime}\left(\sum_{;} \tau\right), i, e . S_{p}\left(\sum\right) \subseteq S_{p p}^{\prime} \sum_{;} \tau$ hence $S_{p}\left(\sum\right)=S_{p p}^{\prime} \sum_{;} \tau$. Further from (33) we get

$$
S_{T}\left(\sum\right) \subseteq \overline{S_{T}^{\prime}\left(\sum_{;} \tau\right)}, \tau=s, p p, s c, a c
$$

Taking (27) into account we get $S_{T}^{\prime}\left(\sum_{h_{k}}\right) \subseteq S\left(\sum_{h_{k}}\right), \tau=s, s c, a c, s c$ for each $h_{k} \in \tau$. Since $S\left(\sum_{h_{k}}\right) \subseteq S\left(\sum\right)$ for each $h_{k} \in T$ we get $S_{T}^{\prime}\left(\sum_{;} \tau\right)$ which immediately proves (34). Taking (20) and (21) into account we obtain that $C_{1}=0$ which leads to the representation.

$$
\begin{equation*}
M(z)=C_{0}+\int_{\square}\left(\frac{1}{t-Z}-\frac{t}{1+t^{2}}\right) d \sum(t), z \in \square \tag{38}
\end{equation*}
$$

Lemma (1-2-9) [96]:

Let A be a simple densely defined closed symmetric operator on the a separable Hilbert space with $n_{+}(A)=n_{-}(A)$. Further, let $\Pi=\left[\mathscr{H}, \Gamma_{0}, \Gamma_{1}\right]$ be a boundary triple of A^{*} with Weyl function $\sum($.$) . If E_{A_{0}}($.$) is the spectral measure of A_{0}=A^{*} \mid \operatorname{ker}\left(\Gamma_{0}\right)\left(\in E x t_{A}\right)$ and $\sum($.$) that of the$ integral representation (38) of the Weyl function $\sum($.$) . Then the measure E_{A_{0}}$ (.) and $\sum($.$) are$ equivalent. In particular one has $\delta_{\tau}\left(A_{0}\right)=\delta_{\tau}\left(\sum\right)$.
Theorem (1-2-10) [96]:
Let A be a simple densely defined closed symmetric operator on a separable Hilbert space h with $n_{+}(A)=n_{-}(A)$. Further let $\Pi=\left[\mathscr{H}, \Gamma_{0}, \Gamma_{1}\right]$ be a boundary triple of A^{*} with Weyl function $M($.$) .$

If $E_{A_{0}}($.$) is the spectral measure of A_{0}=A^{*} \operatorname{ker} \Gamma_{0}\left(\in E x t_{A}\right)$ and $\sum($.$) that of the integral$ representation (38) of the Weyl function $M($.$) , then for each total set$ $\tau=\left\{h_{k}\right\}_{k=1}^{N}, 1 \leq N \leq+\infty$ in \mathcal{H} the sets $S_{s}^{\prime}\left(\sum_{j} \tau\right), S_{p p}^{\prime}\left(\sum_{j} \tau\right), S_{s c}^{\prime}\left(\sum_{j} \tau\right)$ and $S_{a c}^{\prime}\left(\sum_{;} \tau\right)$.
Singular pure point, singular continuous, and absolutely continuous supports of $E_{A_{0}}($. respectively, i.e. we have

$$
\begin{equation*}
E_{A_{0}}\left(\chi \cap S_{T}^{\prime}\left(\sum ; \tau\right)\right)=E_{A_{0}}^{T}(\chi) \tag{39}
\end{equation*}
$$

For each Borel set $\chi \in \mathscr{R}$. In particular the relations $\delta_{p}\left(A_{0}\right)=S_{p p}^{\prime} \sum_{;} \tau$ and

$$
\delta_{\tau}\left(A_{0}\right) \subseteq S_{\tau}^{\prime} \sum_{i} \tau \subseteq \delta\left(A_{0}\right), \tau=s, s c, a c \text { hold. }
$$

Proof:
Since by lemma (1-2-8) the sets $S_{T}^{\prime}(\delta ; \tau), \tau=s, p p, s c, a c$ are supports of $\sum($.$) , one$ immediately gets from lemma (1-2-9) that the same sets are supports of $E_{A_{0}}($.$) of the same type,$ i.e., (39) holds . If $x \in S_{p p}^{\prime}\left(\sum_{i} \tau\right)$ then there is at least one $k=1,2, \ldots, N$ such that

$$
\left(E_{A_{0}}(\{x\}) \gamma(i) h_{k}, \gamma(i) h_{k}\right) \neq 0
$$

Hence $x \in \delta_{p}\left(A_{0}\right)$ conversely, if $x \in \delta_{p}\left(A_{0}\right)$ then due to the fact that $\gamma(i) \tau$ is Generating for $E_{A_{0}}($.$) then is at least one k=1,2, \ldots, N$ such that

$$
\left(E_{A_{0}}(\{x\}) \gamma(i) h_{k}, \gamma(i) h_{k}\right) \neq 0
$$

Hence $x \in S_{p p}^{\prime} \sum_{i} \tau$ which proves $\delta_{p}\left(A_{0}\right)=S_{p p}^{\prime}\left(\sum_{;} \tau\right)$ the relations $\delta_{s}\left(A_{0}\right) \subseteq \overline{S_{\tau}^{\prime}\left(\sum_{i} \tau\right.} \subseteq$ $\delta\left(A_{0}\right), \tau=s, s c, a c$ are consequences of lemma (1-2-8) and lemma (1-2-9) .we characterize the spectral properties of the operator-valued measure $\sum($.$) using the boundary behavior of the$ Weyl-function $M($.$) . A first step is to develop a corresponding theory for scalar measure \mu$ which satisfies

$$
\begin{equation*}
\int_{R} \frac{d \mu(t)}{1+t^{2}}<+\infty \tag{40}
\end{equation*}
$$

Let us associate with μ the Poisson integral

$$
\begin{equation*}
V(z)=\int_{R} \frac{y d \mu(t)}{(t-x)^{2}+y^{2}}, z=x+i y \in \square_{+} \tag{41}
\end{equation*}
$$

Which defines a positive harmonic function in \square_{+}. Conversely it is well known that each positive harmonic function $V_{1}(z)$ in \square_{+}admits the representation $V_{1}(z)=a y+V(z)$ with $a \geq 0$ and $V(z)$ of the form (40) and (41). Below we summarize some well-known facts on positive harmonic function

Let μ be a positive Radan measure obeying (40) and let $V(z)$ be a positive harmonic function in $z=x+i y \in \square_{+}$defined by (41). Then one has.
(i) for any $x \in \square$ the $\lim V(x+i o)=\lim V(x+i y)$ exists and is finite, if and only if symmetric derivative $D_{\mu}(x)$

$$
\begin{equation*}
D_{\mu}(x)=\lim _{\varepsilon \rightarrow 0} \frac{\mu(x+\varepsilon)-\mu(x-\varepsilon)}{2 \varepsilon} \tag{42}
\end{equation*}
$$

Exists and is finite. In this case one has

$$
\begin{equation*}
V(x+i o)=\pi D_{\mu}(x) \tag{43}
\end{equation*}
$$

$$
V(z) \rightarrow+\infty \text { as }
$$

$$
z \rightarrow>x
$$

(iii) for each $x \in \mathscr{R}$ one has $\operatorname{Sm}(z-x) V(z) \rightarrow \mu(\{x\})$ as $z \rightarrow>x$
(iv) $\quad V(z)$ converges to a finite constant as $z \rightarrow>x$, if and only if the derivative $d \mu(t) d t$ exists at $t=x$ and is finite.
The symbol $\rightarrow>$ means that the limit $\lim _{r \rightarrow 0} V\left(x+r e^{i \theta}\right), x \in R$ exists uniformly in $\theta \in[\varepsilon, \pi-\varepsilon]$ for each $\varepsilon \in(0, \pi / 2)$. Proposition (1-2-11) allows us to introduce measures satisfying (40) the following sets $z=(x+i y)$

$$
\begin{align*}
& S_{s}^{\prime \prime}(\mu)=\{x \in \square: \mathrm{V}(z) \rightarrow \infty\} \text { as } z \rightarrow>x \tag{44}\\
& S_{p p}^{\prime \prime}(\mu)=x \in \square: \mathrm{Sm}_{\mathrm{z} \rightarrow \rightarrow \mathrm{x}}(\mathrm{z}-\mathrm{x}) V(z)>0 \tag{45}\\
& S_{s c}^{\prime \prime}(\mu)=\{x \in \square: \mathrm{V}(z) \rightarrow \infty \text { and }(z-x) V(z) \rightarrow 0 \text { as } z \rightarrow>x\} \tag{46}\\
& S_{s c}^{\prime \prime}(\mu)=\{x \in \square: \mathrm{V}(\mathrm{x}+\mathrm{i} 0) \text { exists and } 0<V(x+i 0)<\infty\} \tag{47}
\end{align*}
$$

Obviously the sets $S_{s}^{\prime \prime}(\mu)$ and $S_{a c}^{\prime \prime}(\mu)$ as well as $S_{p p}^{\prime \prime}(\mu), S_{s c}^{\prime \prime}(\mu)$, and $S_{a c}^{\prime \prime}(\mu)$ are mutually disjoint. By proposition (1-2-15) one immediately gets that $\quad S_{p p}^{\prime}(\mu)=S_{p p}^{\prime \prime}(\mu)$ and

$$
\begin{equation*}
S_{\tau}^{\prime}(\mu) \subseteq S_{\tau}^{\prime \prime}(\mu) \subseteq S(\mu) \tag{48}
\end{equation*}
$$

Indeed the relation $S_{p p}^{\prime}(\mu)=S_{p p}^{\prime \prime}(\mu)$ is a consequence of (iii).By (ii) we get

$$
S_{s}^{\prime}(\mu) \subseteq S_{s}^{\prime \prime}(\mu)
$$

Similarly we prove $S_{s c}^{\prime}(\mu) \subseteq S_{s c}^{\prime \prime}(\mu)$ using (ii) and(iii). Finally the relation $S_{a c}^{\prime}(\mu) \subseteq S_{a c}^{\prime \prime}(\mu)$ follows from (i). We note that it can happen that $S_{s c}^{\prime}(\mu) \neq 0$ and the inclusion $S_{s c}^{\prime}(\mu) \subseteq S_{s c}^{\prime \prime}(\mu)$ is strict even if $\mu_{s c}=0$. Furthermore we note that from (26) and the inclusion $S_{T}^{\prime}(\mu) \subseteq S_{T}^{\prime \prime}(\mu), \tau=s, p p, s c, a c$ we find that

$$
\begin{equation*}
\mu\left(\chi \cap S_{\tau}^{\prime \prime}(\mu)\right)=\mu_{\tau}(x) \tag{49}
\end{equation*}
$$

For any Borel set $\chi \in \square$. Now we are going to characterize the spectral parts of the extension A_{0} by means of boundary values of the Weyl function $M($.$) .$

Using the integral representation (38) of the Weyl function we easily get that

$$
\begin{equation*}
V_{h}(z)=\int_{\square} \frac{\mathrm{y}}{(\mathrm{x}-\mathrm{t})^{2}+y^{2}} \mathrm{~d} \sum_{\mathrm{h}}(\mathrm{t})=\operatorname{Sm}\left(M_{h}(z)\right), z \in \square, \quad h \in \mathscr{H} \tag{50}
\end{equation*}
$$

Where $M_{h}(z)=(M(z) h, h), z \in \square, \quad h \in \notin$
The function $M_{h}($.$) is a scalar R-function. Since M_{h}($.$) arises from the Weyl function we call it$ the associated scalar Weyl function $V_{h}($.$) is imaginary$
part of the associated scalar Weyl function $M_{h}($.$) and the theory developed we can relate the$ boundary behavior at the real axis the imaginary part of associated scalar Weyl functions with the spectral properties of the self-adjoint extension A_{0}. To this end in addition to (29) and (32) we introduce.

$$
\begin{align*}
& S_{s}^{\prime \prime}\left(\sum_{;} \tau\right)=\cup_{k=1}^{N} S_{s}^{\prime \prime}\left(\sum_{h_{k}}\right) \tag{52}\\
& S_{p p}^{\prime \prime}\left(\sum_{;} \tau\right)=\cup_{k=1}^{N} S_{p p}^{\prime \prime}\left(\sum_{h_{k}}\right) \\
& S_{s c}^{\prime \prime}\left(\sum_{;} \tau\right)=\cup_{k=1}^{N} S_{s c}^{\prime \prime}\left(\sum_{h_{k}}\right) \backslash S_{p p}^{\prime \prime}\left(\sum\right) \tag{54}\\
& S_{a c}^{\prime \prime}\left(\sum ; \tau\right)=\cup_{k=1}^{N} S_{a c}^{\prime \prime}\left(\sum_{h_{k}}\right) \backslash S_{s}^{\prime \prime}\left(\sum\right) \tag{55}
\end{align*}
$$

By definition the sets $S_{s}^{\prime \prime}\left(\sum_{;} \tau\right)$ are disjoint. They holds for $S_{p p}^{\prime \prime}\left(\sum_{;} \tau\right)$. Furthermore we denote that the sets $S_{T}^{\prime \prime}\left(\sum_{;} \tau\right)$ have Lebesgue zero, i.e., mes
$S_{T}^{\prime \prime}\left(\sum_{;} \tau\right)=0, \tau=s, p p, s c$., it turns out that the sets $S_{T}^{\prime \prime}\left(\sum_{;} \tau\right)$ in theorem (1-2-14) can be replaced by the sets $S_{T}^{\prime \prime}\left(\sum_{;} \tau\right)$

Theorem (1-2-12) [96]:

Let A be a simple densely defined closed symmetric operator on a separable Hilbert space H with $n_{+}(A)=n_{-}(A)$. Further, let $\Pi=\left\{\mathscr{H}_{t}, \Gamma_{0}, \Gamma_{1}\right\}$ be a boundary triple of A^{*} with Weyl function $M($.$) . If E_{A_{0}}($.$) is the spectral measure of A_{0}=A^{*} \mid \operatorname{ker} \Gamma_{0}\left(\in E x t_{A}\right)$ and total set $T=\left\{h_{k}\right\}_{k=1}^{N}, 1 \leq N \leq+\infty$ in \mathscr{H} the sets $S_{s}^{\prime \prime}\left(\sum_{;} \tau\right), S_{p p}^{\prime \prime}\left(\sum_{;} \tau\right), S_{s c}^{\prime \prime}\left(\sum_{;} \tau\right)$ and $S_{a s}^{\prime \prime}\left(\sum_{;} \tau\right)$ are singular , pure point, singular continuous and absolutely continuous supports of $E_{A_{0}}($. respectively, i.e., we have

$$
\begin{equation*}
E_{A_{0}}\left(\chi \cap S_{\tau}^{\prime \prime}\left(\sum_{;} \tau\right)\right)=E_{A_{0}}^{\tau}(\chi), \tau=s, p p, s c, a c \tag{56}
\end{equation*}
$$

For each Borel set $\chi \in \square$. In particular it hold $\delta_{p}\left(A_{0}\right)=S_{p p}^{\prime \prime}\left(\sum_{;} \tau\right)$ and

$$
\delta_{\tau}\left(A_{0}\right) \subseteq S_{\tau}^{\prime \prime}\left(\sum_{;} \tau\right) \subseteq \delta\left(A_{0}\right), \tau=s, s c, a c
$$

Proposition (1-2-13) [96]:

Let $\phi($.$) be a scalar R-function. Then for almost all x \in \square$ the limit $\phi(x+i 0)=\lim _{y \rightarrow 0}$ $\phi(x+i 0)$ exists and moreover in this case one has $\varphi(x+i o)=\lim _{z \rightarrow x} \varphi(z)$.

Theorem (1-2-14) [96]:

Let A be a simple densely defined closed symmetric operator on a separable Hilbert space h with $n_{+}(A)=n_{-}(A)$ Further let $\Pi=\left\{\mathcal{H} \Gamma_{0}, \Gamma_{1}\right\}$ be a boundary triple of A^{*} with Weyl function $M($.$) and let E_{A_{0}}(0)$ be the spectral measure of the self- adjoint extension A^{*} of A. If $\tau=\left\{h_{k}\right\}_{k=1}^{N}, 1 \leq N \leq+\infty$ is a total set in \mathscr{H} then sets $\Omega_{s}(M ; \tau), \Omega_{p p}(M ; \tau), \Omega_{s c}(M ; \tau)$ and $\Omega_{a c}(M ; \tau)$ are supports of $E_{A_{0}}($.$) respectively. i.e., we have$

$$
\begin{equation*}
E_{A_{0}}\left(\chi \cap \Omega_{\tau}(M ; \tau)\right)=E_{A_{0}}^{\tau}(\chi), \tau=s, p p,, s c . a c \tag{57}
\end{equation*}
$$

For each Borel set $\chi \in R$ In particular it holds $\delta_{p}\left(A_{0}\right)=\Omega_{p p}(M ; \tau)$ and $\delta_{\tau}\left(A_{0}\right) \subseteq \overline{\Omega_{\tau}(M ; \tau)} \subseteq \delta_{\tau}\left(A_{0}\right)$ for $\tau=s, s c, a c$. We note that the inclusions $\delta_{s}\left(A_{0}\right) \subseteq \overline{\Omega_{s}(M ; \tau)} \quad$ and $\quad \delta_{s c}\left(A_{0}\right) \subseteq \overline{\Omega_{s c}(M ; \tau)}$ of theorem (1-2-14) may be strict even if $\delta_{s c}\left(A_{0}\right)$ is empty.
Let $\mu($.$) be a Borel measure on R$ and let $\chi \subseteq \square$ be a Borel set the set

$$
\begin{equation*}
C L_{a c}(x)=x \subseteq \square: \operatorname{mes}((x-\varepsilon, x+\varepsilon) \cap x)>0 \forall \varepsilon>\delta \tag{58}
\end{equation*}
$$

is
called the absolutely continuous closure of set x obviously the set $C L_{a c}(x) \in \bar{x}$ is always closed and one has
Lemma (1-2-15) [96]:
Let $\phi($.$) be a scalar R-function which has the representation (10) then S_{a c}(\mu)=C L_{a c}\left(\Omega_{a c}(\phi)\right)$ Proof:

If $x \notin=C L_{a c}\left(\Omega_{a c}(\phi)\right)$ then there is an $\in>0$ such that mes $(x-\varepsilon, x+\varepsilon) \cap \Omega_{a c}(\varphi)=\theta$

$$
\begin{equation*}
\mu_{a c}(x-\varepsilon, x+\varepsilon)=\mu_{a c}(x-\varepsilon, x+\varepsilon) \cap \Omega_{a c}(\varphi)=0 \tag{59}
\end{equation*}
$$

Hence $x \notin S\left(\mu_{a c}\right)=S_{a c}(\mu)$ which yields $S_{a c}(\mu) \subseteq C L_{a c}\left(\Omega_{a c}(\phi)\right)$ conversely if $\quad x \notin S_{a c}(\mu)$ then there is an $\varepsilon>0$ such that $(x-\varepsilon, x+\varepsilon) \cap \Omega_{a c}(\mu)=0$ then $\mu_{a c}(x-\varepsilon, x+\varepsilon)=0$ using

$$
\begin{equation*}
\mu_{a c}(x-\varepsilon, x+\varepsilon)=\mu_{a c}(x-\varepsilon, x+\varepsilon) \cap \Omega_{a c}(\phi) \int_{(x-\varepsilon, x+\varepsilon) \cap \Omega_{a c}(\phi)} \frac{d \mu(t)}{d t} d t=0 \tag{60}
\end{equation*}
$$

and proposition (1-2-11) (i) and (vi) one gets

$$
\begin{equation*}
\mu_{a c}(x-\varepsilon, x+\varepsilon)=\frac{1}{\pi} \int_{(x-\varepsilon, x+\varepsilon) \cap \Omega_{a c}(\phi)} \operatorname{Sm}(\phi(\tau+i 0)) d \tau=0 \tag{61}
\end{equation*}
$$

Hence $\operatorname{Sm}(\phi(t+i 0)) d t=0$ for a.e.t $(x-\varepsilon, x+\varepsilon) \cap \Omega_{a c}(\phi)$. However by definition of the set $\Omega_{a c}(\phi)$ one has $\operatorname{Sm}(\phi(\tau+i 0)) d t>0 \quad$ for all $\quad \tau \Omega_{a c}(\phi)$ which implies $m e s\left((x-\varepsilon, x+\varepsilon) \cap \Omega_{a c}(\phi)\right)=0$

Hence $x \notin C L_{a c}\left(\Omega_{a c}(\phi)\right)$ or equivalent $C L_{a c}\left(\Omega_{a c}(\phi)\right) \subseteq S_{s c}(\mu)$.

Proposition (1-2-16) [96]:

Let A be a simple densely defined closed symmetric operator a separable Hilbert space with $n_{+}(A)=n_{-}(A)$. Further let $\Pi=\left\{\mathcal{H}_{t}, \Gamma_{0}, \Gamma_{1}\right\}$ be a boundary triple of A^{*} with Weyl function $M($.$) If \tau=\left\{h_{k}\right\}_{k=1}^{N}, 1 \leq N \leq+\infty$ is a total set in \mathscr{H} then the absolutely continuous spectrum of the self-adjoint extension A_{0} of A is given by.

$$
\begin{equation*}
\delta_{a c}\left(A_{0}\right)=\overline{\cup_{k=1}^{N} C L_{a c}\left(\Omega_{a c}\left(M_{h_{k}}\right)\right)} \tag{62}
\end{equation*}
$$

Theorem (1-2-17)[96]:
Let A be a simple densely defined closed symmetric operator on a separable Hilbert space h with $n_{+}(A)=n_{-}(A)$. Further, let $\Pi=\left\{\mathcal{H}_{,}, \Gamma_{0}, \Gamma_{1}\right\}$ be a boundary triple of A^{*} with Weyl function $M($.$) .$
If $\tau=\left\{h_{k}\right\}_{k=1}^{N}, 1 \leq N \leq+\infty$ is a total set in \mathscr{H}, then for the self-adjoint extension A_{0} of A the following conclusions are valid :
(i) The self-adjoint extension A_{0} of A has no point spectrum within the interval (a, b). i.e., $\delta_{p p}\left(A_{0}\right) \cap(a, b)=\theta$ if and only if for each $k=1,2, \ldots N$ one has

$$
\begin{equation*}
\lim _{y \rightarrow 0} y M_{h k}(x+i y)=0 \tag{63}
\end{equation*}
$$

for all $x \in(a, b)$. In this case the following relation holds

$$
\begin{equation*}
\delta\left(A_{0}\right) \cap(a, b)=\frac{\delta_{c}\left(A_{0}\right) \cap(a, b)}{\cup_{k=1}^{N} \Omega_{a c}\left(M_{h k}\right) \cup}=\overline{\cup_{k=1}^{N} \Omega_{a c}\left(M_{h k}\right)} \cap(a, b) \tag{64}
\end{equation*}
$$

(ii) The self-adjoint extension A_{0} of A has no singular continuous spectrum within the interval (a, b), i.e. $\delta_{a c}\left(A_{0}\right) \cap(a, b)=\theta$ if for each $k=1,2, \ldots N$ the set $\Omega_{a c}\left(M_{h k}\right) \cap(a, b)$ is countable in particular, if $(a, b) \mid \Omega_{a c}\left(M_{h k}\right)$ is countable.
(iii) The self-adjoint extension A_{0} of A has no absolutely continuous spectrum within the interval (a, b).i.e., $\delta_{a c}\left(A_{0}\right) \cap(a, b)=\theta$ if and only if for each $k=1,2, \ldots N$ the condition
$\operatorname{Sm}\left(M_{h k}(x+i 0)\right)=0$
holds for a.e. $x \in(a, b)$. in this case we have

$$
\delta_{s}\left(A_{0}\right) \cap(a, b)=\overline{\Omega_{s}(M ; \tau)} \cap(a, b)
$$

Proof:
(i) If condition (65) is satisfied for all $x \in(a, b)$ and all $k=1,2, \ldots N$, then a simple computation shows that $\lim _{z \rightarrow x}(z-x) M_{h k}=0$ holds for all $x \in(a, b)$ and each $k=1,2, \ldots N$ too. Therefore $\Omega_{p p}\left(M_{h k}\right) \cap(a, b)=0$ for $k=1,2, \ldots N$ whichyields $\Omega_{p p}(M ; T) \cap(a, b)=0$ theorem (1-2-14). Implies $\delta_{p}\left(A_{0}\right) \cap(a, b)=0$ which yields $\delta_{p p}\left(A_{0}\right) \cap(a, b)=0$.
(ii) Conversely if $\delta_{p p}\left(A_{0}\right) \cap(a, b)=0$ then $\delta_{p}\left(A_{0}\right) \cap(a, b)=0$ again by theorem (1-2-14) we find $\delta_{p p}\left(A_{0}\right) \cap(a, b)=0$ therefore $\delta_{p p}\left(A_{0}\right) \cap(a, b)=0$ for each $k=1,2, \ldots N$. However this implies that $\lim _{z \rightarrow x}(z-x) M_{h k}(z)=0$ which yields $\lim _{y \rightarrow 0} y M_{h k}(x+i y)=0$ for all $x \in[a, b]$ and each $k=1,2, \ldots N$. The first of relation (64) is consequence of $\delta\left(A_{0}\right)=\delta_{p p}\left(A_{0}\right) U \delta_{c}\left(A_{0}\right)$ and $\delta_{p p}\left(A_{0}\right) \cap(a, b)=0$. The second part of relation (64) is a consequence of theorem (1-2-18) which shows that

$$
\begin{equation*}
\delta_{\tau}\left(A_{0}\right) \subseteq \overline{\Omega_{\tau}(M ; \tau)}=\overline{\cup_{k=1}^{N} \Omega_{\tau}(M ; \tau)} \subseteq \delta\left(A_{0}\right), \tau=s c, a c \tag{67}
\end{equation*}
$$

and $\delta_{c}\left(A_{0}\right)=\delta_{s c}\left(A_{0}\right) U \delta_{a c}\left(A_{0}\right)$. Both facts imply that $\delta_{c}\left(A_{0}\right) \cap(a, b) \subseteq$

$$
\begin{equation*}
\overline{\cup_{k=1}^{N} \Omega_{a c}\left(M_{h k}\right)} \cup_{k=1}^{N} \Omega_{a c}\left(M_{h k}\right) \cap(a, b) \subseteq \delta\left(A_{0}\right) \cap(a, b)=\delta_{c}\left(A_{0}\right) \cap(a, b) \tag{68}
\end{equation*}
$$

Which proves (64)
(ii) By (53) we gets that $S_{a c}^{\prime}\left(\sum_{h k}\right)=S^{\prime}\left(\sum_{h k, s c}\right) \subseteq S_{s c}^{\prime \prime}\left(\sum_{h k}\right) \Omega s c\left(M_{h k}\right)$. Therefore if $\Omega_{a c}\left(M_{h k}\right) \cap(a, b)$ is countable, then so is $S_{a c}^{\prime \prime}\left(\sum_{h k}\right) \cap(a, b)$ this yields that the singular continuous measure $\sum_{h h, s c}($.$) is supported within the interval (a, b)$ on a countable set. However this implies that $\sum_{h k, s c}(a, b)=0$ for each $k=1,2, \ldots, N$ and every $h \in \mathscr{H}$ one has $\sum_{h K, s c}(a, b)=0$ which yields $\sum^{s c}(a, b)=0$. Therefore by lemma(1-2-9) one gets $E_{A_{0}}^{s c}(a, b)=0$ which proves $\delta_{s c}\left(A_{0}\right) \cap(a, b)=0$. If $(a, b) \backslash \Omega_{a c} M_{h k}$ is countable, then by $\Omega_{s c}\left(M_{h k}\right) \subseteq(a, b) \backslash \Omega_{a c}\left(M_{h k}\right)$ the set $\Omega_{s c}\left(M_{h k}\right)$ is countable too which completes the proof (ii). (iii) If for each $k=1,2, \ldots, N$ the condition (65) holds for a.e. $x \in(a, b)$ each $\varepsilon>0$ one has $\operatorname{mes}(x-\varepsilon, x+\varepsilon) \cap \Omega_{a c}\left(M_{h k}\right) \cap(a, b)=\theta$ hence $C L_{a c}\left(\Omega_{a c}\left(M_{h k}\right)\right) \cap(a, b)=0$ taking proposition (1-216) into account we find $\delta_{a c}\left(A_{0}\right) \cap(a, b)=0$. Conversely if $\delta_{a c}\left(A_{0}\right) \cap(a, b)=0$ then proposition (1-2-16) for each $k=1,2, \ldots, N$ we have $C L_{a c}\left(\Omega_{a c}\left(M_{h k}\right)\right) \cap(a, b)=C L_{a c}\left(\Omega_{a c}\left(M_{h k}\right)\right) \cap(a, b)=0$ Which verifies condition (65) for a.e $x \in(a, b)$. Using $\delta\left(A_{0}\right) \cap(a, b)=\delta_{s}\left(A_{0}\right)$ and $\delta_{s}\left(A_{0}\right) \subseteq \overline{\Omega_{s}(M ; \tau)} \subseteq \delta\left(A_{0}\right)$ which was proved in theorem (1-2-14)

Reference

[1]. A. Laptev, S. Naboko, O. Safronov, On new relations between spectral properties of Jacobi matrices and their coefficients to appear.
$\left.{ }^{[}{ }^{〔}\right]$. G. SzegÓ, orthogonal polynomials fourth edition Amer .Math .Soc. colloq, publ. xxIII.Amer.Math Soc, providence, RI,(19ソ०).
[3]. Dr. Shawgy Hussein, Bashir Eissa, Bitriangular Operators of Jordan form and Inverse Spectral Theory for Symmetric Operators with Joint Invariant Subspaces. Sudan university .PH.D Mathematics, (\upharpoonright. . 9).

