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Abstract 

The study discusses the proof of and symmetric application of Cases sum rules for Jacobi 

matrices. Of special interest is a linear combination of these sum rules which have strictly 

positive terms. The complete classification of the spectral measure of all Jacobi matrices J for 

which  J-J0 is Hilbert space –Achmidt. The study shows the bound of a Jacobi matrix. The 

description for the point and absolutely continuous spectrum, while for the singular continuous 

spectrum additional assumptions are needed.  The study shows and prove a bound of a Jacobi 

matrix. And we give complete description for the point and absolutely continuous spectrum, 

while for the singular continuous spectrum additional assumptions are needed, we prove a 

characterization of a characteristic function of a row contraction operator and verify its defect 

operator. We also prove a commutability of an operator of this row contraction.  
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Section (1-1):  Spectral Form for Jacobi Matrices:  

The case of some rules and were efficiently used to relate properties of elements of a Jacobi 

matrix of certain class with its special properties. For instance spectral data of Jacobi matrices 

being a Hilbert space-Schmeidt perturbation of the free Jacobi matrix were characterization 

[42,101,135] and we suggest a modification of the method that permits us to work with higher 

order sum rules. We obtain sufficient conditions for a Jacobi matrix to satisfy certain constraints 

on its spectral measure. We consider a Jacobi matrix [129,124]. 

                             







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


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baJJ      

Where   0,k ka a a   and  ,k kb b b   , We assume that J is a compact perturbation of the 

free Jacobi matrix 0J  

                                         


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
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








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A scalar spectral measure  J   is defined by the formula   
 

0 0,
d x

J z e e
x z


 

  with 

z \ , the absolutely continuous spectrum  Jac  of J fills in [-2, 2]and the discrete 

spectrum consist of two sequences  jx with properties    2jx ,  2jx   and 

2, 2j jx x                                

Let  1 kka aa  for a given a  and Nk  we construct a sequence  k  by formula  

  1...k

k j j j kj
a        where 1a    and 1 is a sequence of units 

Theorem (1-1-1) [87]: 

Let  be a Jacobi matrix described above. If 

              (i)     1 21, , ,m

a ba b L L      

             (ii)     , 3, 1 / 2k a L k m                                                                 (2) 

Then                      
1

2 2 2log . 4
2

m
i x x dx


    

 

                            
1/2

2 4
m

ii x
j


                                                            (3) 

When 1m  the theorem gives the fact of theorem (1-1-1)  

Proof: 

       Define   Jm  as        ,1 ,2m m m mJ          

 baJJ ,
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We have to show that   Jm . We put   
kNN aa  and   

kNN aa  , where  

                                      



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Define sequences NN bb ,  in the same way (of course, with ,1 s  replaced by s,0 ). 

Let  NNN baJJ , . As we readily see, 0,,0,1  NNNN baba , and   0k Na    

in corresponding norms, as N  by the Lemma  

(1-1-4) below, we have for mNN   

                    

     

 

1 1 1

2 2 1

, ( 1

)

m m N m N N N Nm m

N N k N

k

J J a b C a b

a b d

  

  

    

  

     

  
 

or                    NasJJ mNm ,  

on the other hand    
1 1

NJ z J z for z
 

    \R, and consequently  N  weakly 

   NmNm  1,1, intlim  and     2,2,lim mNm   we bound the latter quantity 

    
j

jmm xGJ2,  1

1

1

12 1









m

m

m

m
baC  with some constant 2C . Summing up we obtain   

                         lim sup lim sup limN N N N N
N

J J J      


     

The proof is complete. It is easy to give simple conditions sufficient for  k a L   for the 

instance put    

    1 1... 1k j j k jj
A a k         , then relations 21,1 LeLa a

m    and    mk

k LaA ,2  

     kmmmk  2!1,2  imply that  k a L  . In particular we have the following corollary. 

Corollary (1-1-2) [87]: 

         Theorem (1-1-1) holds if conditions (i), (ii) are replaced with 

    ,,2 mk

k LaA       kmmmk  2/1,2 , where 






 


2

1
,

m
k   we observe that relations (i) 

and (ii) are trivially true in the case of discrete Schrödinger operator i.e., when  bJJ ,1 . 

Corollary (1-1-3) [87]: 

Then inequalities    iiandi   let hold  bJJ ,1 . If 1 mLb  , 2Lb , the        corollary is 

still true if
2mb L  , m being even. The proof is a sum rule of a special type. First we obtain it 

assuming rank    0JJ . Applying methods we see that  

               
 

     JxGdxx
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Where    baJ mm ,   and        
1 3

1 2 22 2
01 4 4

m mm

mG x C x o x
 

      with  2,2\ Rx , 0C  being 

a positive constant. where 

                   
     

  





 




 






A
m

m
JJ

k
trJ kk

m

k
k

k

m log
!!2

!!12

2

1 2

0

2

1
12

1

                               (4) 

Where  kadiagA   and 
  !!!!

!!~

kkm

m
C k

m


 . Notation !!k  is used for “even” or “odd” factorials.  

Lemma (1-1-4) [5]: 

Let  baJJ ,  we have 

   
 1 /2

1 1 1 2 2 1
3

1

m

m a km m
k

J C a b b a 
   

 


 
        

 
 

                   (5) 

Where 1C  depends on T  only. Above, norms .
p
refer to the standard pL space norms. We 

begin with considering expressions tr  kk JJ 2

0

2   arising in (4). Defining  baJJJV ,10   

we have  

1

0 0 0
1 ... 2

22 2 1...
pp i I k p

ik ipk ktr J J tr VJ VJ
    

 
  
 

   

 

We prove the lemma in steps.  

Proof: 

First we bounded summands corresponding to 
1

,
2

m
P m


  in [87]. We get 

      
11

,000
s

p

p
s

p

p

p

p VJFJFVJFVtr   and for these sP '  

                       1

1

1

110

1

10 1
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







 
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m

s

p baCVCV                                      (6) 

With the constant depending on  V . Similarly  1
1 111

p m
tr C a m


  

, let 

mp ,3  now. As we already mentioned in [134] 

                                     



p

j

j

jpjp

ip SbapbapSV
0

,, ,, . 

It is easy to show by induction that the polynomials  baP pp ,, are particularly simple. Namely 

     11, ...,  ppp baP    yields that  

                         
 

  p
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p

p JtrV
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m
JFtrV ,00

!!22

!!12
1


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                                        
 

 
    
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baPpaPtr
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
    

                                        
 

   11...
!!22

!!12
1 


 pj

j
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p

mp

m
  
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Since 0,0 s

p JtrV  for 1 ps . Hence    
 
  







 
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!!12
1

1

0  

                 
 
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!!22

!!12
1 



 


 pj

j

jj

p

j

p

mp

m
    and we obtain that 

                   
 

 
 

1

0 12 1

2 1 !!
1

2 2 !!

pp p

p p

m
trV F J C a

p m
 

 
                                   (7) 

Where 12C depends on mp,  and sequences  k a  are defined in [134] 

Observe that   0p a   when 1p . Furthermore we have for 2p that 

                            
j

jjjj

j

jjj

2
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2
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2 2
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                                                2

2

2

1
2

1

2

1
a

j

jj     

So the left hand-side of (7) for 2p can be estimated by .
2

213 aC  It is also clear that inclusion 

1 mL and 2La  give that  p a L   for 12/  mp . Indeed we have 

      






 
p

k

pkpkp

kp

p

p

1

1111 ......   

The terms in the latter sum look like       
pipi  121 ...  for some  

piii ,...,1 . Obviously 

2

ip ipa a a L       . Applying the Holder inequality   


















k

p

j

q
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j
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k

k
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q
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1

,

1
...  with 

   12,,  pqa j
k

ikj j
  for 1,1  pj and  

2

1
,,  p

k
ikp qa

p
  we get that  

                                     

 12

12

2

214
1

11 ...


 
p

pp

p aC      

Which is finite for 12 mp . Thus gathering the above argument which is complete( see [134] 

)we complete the proof of the lemma  

Lemma (1-1-5) [87]: 

      Let  
piii ,...,1  and ni

s

s  then                             

                                     





nppp
pLLL

pLpLLp

p

npii
JVJVVJCJVVJVJ p

321

321

3322111

000,1000 ,...   

                                      
,

0 0, ,
im p

k k k

i

A V J B V J C    

Where    321321 ,,1,,, LLLpppp   and kkk CBA ,,  are some bounded operators  

Lemma (1-1-6) [87] 
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         Let  
s

pki 2 we have    
223000 ...1 baCJVVJVJtr pkpii p                                     

With 3C  depending on V only. The lemma exactly bounded ,we may assume that operators V

and 0J to commute we estimating  Jm   

                              
 

 
 

2

0

1

2 1 !!
log
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m
p

m p

p

m
J tr V F J I

m
 



  
    

  
                         (8) 

Where  kdiag a A I    and  

                            
 

  
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
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Here p

kC   is a usual binomial coefficient, observe that for 1 mp  we have  

                            1
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1400 1
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
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p baCVJFJFVtr
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Where 
1

.  is the norm in the class of nuclear operators, hence it remains to bound the first m 

terms in (8) we have  

                                   
   12

2

1

1

~~1~1log 








  m
m

p

p

o
p

  

Set pJ ,0  to be a symmetric matrix with 1’s on p-th auxiliary diagonals and o’s elsewhere the 

following lemma holds. 

Lemma (1-1-7) [87]: 

     We have    
 

  p

p

p J
mp

m
JF ,0

1

0
!!22

!!12
1





 

Combining this with explicit form of pV and the series expansion for  ~log I we get the 

required bound (7). 

 

Section (1-2): Spectral Properties of Self-adjoint Extensions 

Let A be a closed symmetric operator on a separable Hilbert space h . If A has equal 

deficiency indices  n A  =dim   h ran A iI , then A has a lot of self-adjoint extensions. 

These self-adjoint extensions can be labeled by the so-called Weyl function  .M  [82, 83, and 

84]. The generalization is based on concept of a boundary triple  0 1, ,   H  for *A being an 

abstract generalization of the Green’s identity. Here H is a separable Hilbert space with dim 

   n AH  and 0  and 1  are linear mapping from dom  *A  to H  so that Green’s identity is 

satisfied [108,119].  

The problem is the following. Let  .M  be the Weyl function of a certain self-adjoint 

extensions 0A  of ,A  introducing the associated scalar Weyl function      H hhhMM h ,,..  

is it possible to localize the different spectral subsets of 0A knowing the boundary values 
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 0 ,hM x i x  of the associated scalar Weyl function. Let H  be separable Hilbert space. 

Recall that an operator function  .F with values in  H  is said to be a Hirglotz or Nevanlina 

function  or R-function if  holomorphic in and for every z   the operator  zF in H is 

dissipative i.e.,    
    *

0
2

F z F z
Sm F z

i


  . In the following we prefer the notion R-

function. The class of R–functions with values in  H is denoted by HR .If    HRF . then there 

exist bounded self-adjoint operator L in K, a bounded non-negative operator 0R  with 

0R K H such that  

               
1 1

1
2 2

0 1 ,kF z C C z R I zL L z R z


     H                              (9) 

Denoting by  .LE  the spectral measure of the self-adjoint operator L  one immediately obtains 

from (9) the representation  

                             0 1 2

1
,

1 F

t
F z C C z d t z

t z t







 
     

  
                     (10) 

Where  
F

.  is an operator valued Borel measure on R  given by  

                        
1 1

2 2 21 . ,L

F

d t t R dE R t                                                  (11) 

the measure  
F

.  is self-adjoint and obeys  

                                    H





 F

td
t 21

1
                                                         (12) 

In contrast to spectral measures of self-adjoint operators it is not necessary true that ran  1 is 

orthogonal to ran   2  for adjoint Borel sets 1 and 2 . 

However the measure  
F

.  is uniquely determined by the R-function  .F . 

The integral in (10) is understood in the strong sense in the following   
F

.  is called the spectral 

measure of  .F  defined by  

                 

 

 


























F

F

F
tt

t

tt

t

0:0,

0:0

0:,0

                                                                 (13) 

The distribution function  
F

.  is strongly left continuous and satisfies the condition  


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                                           tststt
FFFF

,,
*

 

The distribution function  
F

. is called the spectral function of   .F . 

We note that the spectral function  
F

. can be obtained by the Stieltjes transformation: 

          sstt
FFF

0
2

1
0

2

1
=   

0

1
lim , .

t

y
s

w Sm F x iy dx t s


         (14) 

Where it is used that the spectral function is strongly left continuous.  

A will always denote a closed symmetric operator with equal deficiency indices    n A n A 

[97,140,147,148]. 

We can assume that A is simple. This means that A has no self-adjoint parts. Definition (1-2-1) 

[96]: 

A triple  0 ,   1H, consisting of an auxiliary Hilbert space H and linear mapping 

 *:i dom A i  H , 0,1  is called a boundary triple for the adjoint operator H*A , 1,0i  is 

called a boundary triple for the adjoint operator *A  of A  if  

  

(i) The second Green’s formula takes place 

                      * * *

1 0 0 1, , , , , ,A f f A f f f dom A       g g g g               (15) 

(ii) The mapping     HH  *

10 :, Adom is surjective  

Definition (1-2-2) [96]: 

(i) A closed linear relation in H  is closed subspace  of HH . 

(ii) The closed linear relation is symmetric if    1 2 1 2, , 0f f g g  for all  

                   21 gg, ,, 21 ff  

(iii) The closed linear relation  is self-adjoint if it is maximal symmetric. 

Definition (1-2-3) [96]: 

Let  1H,  ,0 be a boundary triple for 
*A  

(i) for every self-adjoint relation  inH   we put  

                         DAAffAdomfD *

10

* ,,:                                 (16) 

(ii) In particular we set 1,0,,1,0,  iifiAA ii
i   

(iii) If  BG  where B is an operator on H ,then we set AAB   

Proposition (1-2-4) [96]: 

            Let  1H,  ,0  be a boundary triple for 
*A then for every self-adjoint relation  in H the 

operator A given by definition (1-2-3) is self-adjoint extension of A the mapping  A from 

the set of self-adjoint extensions in H  onto the set AExt of self-adjoint extensions of A is 
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bijective. It is well known that Weyl function are an important tool in the direct and inverse 

spectral theory of singular Sturm-Liouville operators.  

Definition (1-2-5) [96]: 

Let  1H,  ,0 be a boundary triple for the operator *A . The Weyl function of A 

corresponding to the boundary triple  1H,  ,0 is the unique mapping  

    H0:. AM    satisfying  

   001 ,, AzNffzMf zzzz                                                      (17) 

Where  zIAN z  *ker above implicit definition of the Weyl function is correct and the Weyl 

function  .M  is a R-function obeying  

                                               o Sm M i   

Definition (1-2-6)[96]: 

A closed linear relation in H  is called boundedly invertible if the inverse relation  

     gg ,, ff :HH-1  is the graph of a bounded operator defined on H . we say 

belong to the resolvent set    if the closed linear relation       gg ,:, fffT is 

boundedly invertible.  

Proposition (1-2-7) [96]: 

Let A be a simple closed densely defined symmetric operator in h. Suppose that  1H,  ,0  

is a boundary triple for *A  .M  is the corresponding Weyl function ,  a self-adjoint relation in 

H  and  0A  . Then the following holds.  

(i)   A  if and only if    M0 . 

(ii)  A

  if and only if   0 , ,M p c       

If A is a simple symmetric operator then the Weyl function  .M  determines the pair 

 0, AA  up to unitary equivalence. We shall often say that  .M  is the Weyl function of the pair 

 0, AA or simply of 0A . We can prove  1 .M and  2 .M with values in  1H  and  2H  are 

connected via  

    DKzMKzM  1

*

2                                                                             (18) 

Where  2H *DD  and  12 HH ,K  is boundedly invertible. With each boundary triple we can 

associate a so-called  -field  (.) corresponding to is defined by   

     
1

0 2 0: ,zz N N z A 


   H                                                      (19) 

One can easily check that 

        
1

0 0 0 0 0 0, .z A z A z z z z A  


                                               (20) 

And consequently  .  is a  -field. The  -field and the Weyl function  .M  

are related by  

           
* *

0 0 0 0 0, ,M z M z z z z z z z A                                  (21) 
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The relation (21) means the  .M  is a 2  -function of a pair 0, AA .Further we note that if A is 

simple then  0, AzN z   is generating with respect to 0A  too . 

Let  be a Borel measure on . A support of is a set S such that  \ 0S   we note that 

SS
~

 implies that S
~

is a support too. Measures  and v on R  are called orthogonal if some of 

their supports are disjoint. The topological support  S  of  is the smallest closed set which is 

a support of .According to the Lebesgue-Jordan\decomposition sacs  ,  scpp   . 

Where scpps  ,,  and are the corresponding singular pure point, singular continuous and 

absolutely continuous measures of  respectively. We set  

    acscppsTSS TT ,,,,    the set         acscpps SSSS ,,, are closed and called 

singular, pure point, singular continuous and absolutely continuous supports of  , we denote 

that the closed supports  sS ,     acpp SS ,  and  scS  are not generally mutually disjoint to 

obtain mutually disjoint supports we introduce the following sets . 

      0S t d t dt existsand d t      :                                          (22) 

     0ppS t t    :                                                                    (23) 

     
 

  0sc

d t
S t d t d t exists and t

dt


  

 
      

 
:                         (24) 

       
( )

0 /ac

d t
S t exists and d t dt

dt


 

 
      

 
:                              (25) 

Where the distribution function  .  is similar to (13) defined by  it turns out that. Since the sets 

 TS   , scppsT ,,  are of Lebesgue measure zero and mutually disjoint we find that for any 

Borel set R  one has  

     acscppsTS TT ,,,,                                                        (26) 

The sets  ,sS   ppS  ,  scS  , and  acS  singular pure point ,singular continuous and 

absolutely continuous supports of  respectively. We note that  

                 pppp SS  and      S S S     , , ,s sc ac                  (27) 

In general it is not possible to replace inclusion by equalities, let now   . be a measure with 

values in  H  the measure   . admit a Lebesque- Jordan decomposition 

    
ac s pp sc

,, .As above the notation   

              
scpp

sc

s

pps SSSSSS ,,  and     
acac SS   

stand for the singular pure point , singular continuous and absolutely. We get  

      : 0pS                                                                     (28) 
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we have    p ppS S  and      ppp SS  with each operator-valued measure 

  .  we can associate a scalar measure      H  hhh
h

,,.. . In the following  we are 

interested in the problem whether the spectral properties of the operator valued measure   .  

can be characterized by a family  of scalar measures. To this end let  
1

, 1
N

k
h N


     

be a total set in H with we associate the family  ,. 1 
kh

N

k  of scalar measures. Let us introduce 

the following sets. 

   1; k

N

s k s h
S S 
                                                                          (29) 

   1; k

N

pp k pp h
S S 
                                                                       (30) 

     1;
|

k

N

sc k sc pph
S S S 
                                                          (31) 

     1;
|

k

N

ac k ac sh
S S S 
                                                            (32)   

Lemma (1-2-8) [96]: 

Let H  be a separable Hilbert space and   


NhT
N

kk 1,
1

be a total set in H .Then 

the sets      ; ; ;
, ,s pp scS S S        and  ;acS    are singular ,pure point ,singular 

continuous and absolutely continuous supports  of   .  respectively i.e., 

    
;

, , , ,S s pp sc ac


                                                      (33) 

For any Borel set R . In particular the following relations hold. 

 ;p ppS S     and  

       
;

, , ,p pS S S s sc ac                                                    (34) 

Proof: 

By the Lebesgue-Jordan decomposition one easily gets that for each Hh  We have 

    
,

, , , , ,
h

h h s pp sc ac



                                                        (35) 

For any Borel set R where   Th,
. arises from the Lebesgue-Jordan decomposition of the 

scalar measure  h
. . Let s  . Since mes  ;

0sS    

We get  

                   
,; ; ;

,
k k s

s k k s sh h
S h h S S                      (36) 

For any kh   using (35),(36) and  

     
, ,; ;k s k s k

s s sh h h
S S S                                                                              
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                                            
, ,;k s k s

sh h
S                                    (37) 

We find      
;

, ,
s

s k k k kS h h h h  
 

   
 

    for any kh  . Since  is total we finally 

obtain     
;

s

sS      for any Borel set   . Similarly we prove the statements 

for .,, acscppT   

Let 
;ppx S   . Then there is kh  such that  

khppSx . Hence  

       0,   kkh
hhxx

k

 which yields    0 x  or   pSx , i.e.    
;pp pS S    

conversely if   pSx  then there is a Hh such that    0h
x . If this is not the case then 

for each Thk  one has        0,   kkh
hhxx . Since T is total this yields 

       0,  hkk xhhx  

For each Hh  Contrary to the assumption. however, if there is a Thk  such that `    0
kh

x  

then    
; ;

, , .pp p ppx S i e S S       hence  
;p ppS S    . Further from (33) we get              

   ;
, , , ,T TS S s pp sc ac     

Taking (27) into account we get     , , , ,
k k

T h h
S S s sc ac sc     for each kh  . Since 

     SS
kh

 for each Thk   we get  ;TS    which immediately proves (34). Taking 

(20) and (21) into account we obtain that 01C  which leads to the representation. 

                        0 2
,

1

t
M z C d t z

t

 
    

 


1
t-z

                                   (38) 

Lemma (1-2-9) [96]:  

          Let A be a simple densely defined closed symmetric operator on the a separable Hilbert 

space with     AnAn   . Further, let  0 1, ,   H be a boundary triple of *A  with Weyl 

function   . . If  .
0AE  is the spectral measure of   AExtAA  0

*

0 ker  and   .  that of the 

integral representation (38) of the Weyl function   . . Then the measure  .
0AE  and   .  are 

equivalent. In particular one has    0A     . 

Theorem (1-2-10) [96]: 

Let A be a simple densely defined closed symmetric operator on a separable Hilbert 

space h with    AnAn   . Further let  0 1, ,   H be a boundary triple of *A with Weyl 

function  .M . 
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If  .
0AE is the spectral measure of  AExtAA  0

*

0 ker and   . that of the integral 

representation (38) of the Weyl function  .M , then for each total set  

 
1

, 1
N

k k
h N


     in H  the sets      ; ; ;

, ,s pp scS S S        and  ;acS   . 

Singular pure point, singular continuous, and absolutely continuous supports of  .
0AE  

respectively, i.e. we have  

    
0 0;

T

A T AE S E                                                                       (39) 

For each Borel set R . In particular the relations  0 ;p ppA S    and                                                      

                       0 0;
, , ,A S A s sc ac       hold. 

Proof: 

Since by lemma (1-2-8) the sets  ; , , , ,TS s pp sc ac    are supports of   . , one 

immediately gets from lemma (1-2-9) that the same sets are supports of  .
0AE of the same type, 

i.e., (39) holds . If  ;ppx S    then there is at least one Nk ,...,2,1 such that  

       
0

, 0A k kE x i h i h    

Hence  0Ax p  conversely, if  0Ax p  then due to the fact that  i   is  

Generating for  .
0AE  then is at least one Nk ,....,2,1  such that                                          

       
0

, 0A k kE x i h i h    

Hence 
;ppx S    which proves    0 ;p ppA S    the relations    0 ;s A S     

 0 , , ,A s sc ac    are consequences of lemma (1-2-8) and lemma (1-2-9) .we characterize the 

spectral properties of the operator-valued measure   .  using the boundary behavior of the 

Weyl-function  .M . A first step is to develop a corresponding theory for scalar measure 

which satisfies 

 


R
21 t

td
                                                                                          (40) 

Let us associate with     the Poisson integral  

  zV
 

 
2 2

,
yd t

z x iy
t x y


  

 

R

                                                       (41)    

Which defines a positive harmonic function in  . Conversely it is well known that each 

positive harmonic function  zV1  in   admits the representation    zVayzV 1  with 0a  

and  zV  of the form (40) and (41). Below we summarize some well-known facts on positive 

harmonic function  

Proposition (1-2-11) [96]: 
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Let   be a positive Radan measure obeying (40) and let  zV be a positive harmonic 

function in z x iy    defined by (41). Then one has. 

(i) for any x the    lim limV x io V x iy    exists and is finite , if and only if 

symmetric derivative  xD  

 
   

0
lim

2

x x
D x



   



  
                                                        (42) 

           Exists and is finite. In this case one has  

                                             V x io D x                                            (43) 

(ii) if the symmetric derivative  xD  exists and is infinite the                zV as

xz   

(iii) for each Rx one has       xzVxzSm   as xz      

(iv)  zV  converges to a finite constant as  xz  , if and only if the derivative 

 d t dt exists at xt   and is finite.  

The symbol   means that the limit  
0

lim ,i

r
V x re x


 R  exists uniformly in  ,      

for each  0, / 2  . Proposition (1-2-11) allows us to introduce measures satisfying (40) the 

following sets  z x iy     

    sS x   :V z  as xz                                                      (44)      

     lim 0ppS x V z


   :
z x

Sm z - x                                                     (45) 

        0scS x and z x V z as z x      :V z                      (46) 

      0 0scS x exists and V x i      :V x i0                              (47) 

Obviously the sets  sS  and  acS  as well as   ,ppS   scS  , and  acS  are mutually disjoint. 

By proposition (1-2-15) one immediately gets that           pppp SS   and 

     S S S                                                                                 (48) 

Indeed the relation     pppp SS  is a consequence of (iii).By (ii) we get  

    ss SS   

Similarly we prove     scsc SS   using (ii) and(iii).Finally the relation     acac SS   

follows from (i). We note that it can happen that   0 scS  and the inclusion     scsc SS   is 

strict even if 0sc . Furthermore we note that from (26) and the inclusion 

    , , , ,T TS S s pp sc ac      we find that  

                                      S x                                                          (49) 

For any Borel set   . Now we are going to characterize the spectral parts of the extension 

0A  by means of boundary values of the Weyl function  .M . 
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Using the integral representation (38) of the Weyl function we easily get that  

 
 

    2 2
, ,h hV z Sm M z z h

y
   


 H

y

x-t
h

d t                      (50) 

Where     , , ,hM z M z h h z h  H                                                          (51) 

The function  .hM is a scalar R-function. Since  .hM arises from the Weyl function we call it 

the associated scalar Weyl function  .hV  is  imaginary 

part of the associated scalar Weyl function  .hM  and the theory developed we can relate the 

boundary behavior at the real axis the imaginary part of associated scalar Weyl functions with 

the spectral properties of the self-adjoint extension 0A . To this end in addition to (29) and (32) 

we introduce. 

   1; k

N

s k s h
S S 
                                                                          (52) 

   1; k

N

pp k pp h
S S 
                                                                        (53) 

     1;
\

k

N

sc k sc pph
S S S 
                                                             (54) 

     1;
\

k

N

ac k ac sh
S S S 
                                                             (55) 

By definition the sets  ;sS    are disjoint. They holds for  ;ppS   . Furthermore we denote 

that the sets  ;TS    have Lebesgue zero, i.e., mes 

 ;
0 , , , .TS s pp sc    , it turns out that the sets  in theorem (1-2-14) can be replaced 

by the sets  ;TS    

Theorem (1-2-12) [96]: 

Let A be a simple densely defined closed symmetric operator on a separable Hilbert 

space H with    AnAn   . Further, let  0 1,   H,   be a boundary triple of *A with Weyl 

function  .M . If  .
0AE  is the spectral measure of  AExtAA  0

*

0 ker  and total set 

  


NhT
N

kk 1,
1

 in H  the sets  ;sS   ,    ; ;
,pp scS S     and  ;asS    are 

singular ,pure point , singular continuous and absolutely continuous supports of  .
0AE  

respectively , i.e.,  we have                

    
0 0;

, , , ,A AE S E s pp sc ac

                                                  (56) 

For each Borel set   . In particular  it hold    0 ;p ppA S    and  

                                          0 0;
, , ,A S A s sc ac       . 

Proposition (1-2-13) [96]: 

 ;TS  
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Let  .  be a scalar R-function. Then for almost all x the limit   0ix lim
0y 

 0ix  exists and moreover in this case one has    lim
z x

x io z 


  .  

Theorem (1-2-14) [96]: 

Let A be a simple densely defined closed symmetric operator on a separable Hilbert 

space h with    AnAn   Further let  0 1,   H be a boundary triple of *A with Weyl 

function  .M and let  0
0AE  be the spectral  measure of the self- adjoint extension  *A of A  . If

 
1

N

k k
h


  ,  N1  is a total set in H  then  sets  ;s M  ,  ;pp M  ,  ;sc M   and 

 ;ac M   are  supports  of  .
0AE  respectively. i.e., we have  

    
0 0

; , , , , .A AE M E s pp sc ac

                                               (57) 

For each Borel set R In particular it holds    0 ;p ppA M    and  

     0 0;A M A        for , ,s sc ac  . We note that the inclusions  

   0 ;s sA M       and      0 ;sc scA M    of theorem (1-2-14) may be strict even if 

 0Asc  is empty. 

Let  .   be a Borel measure on R and let    be a Borel set the set   

     0acCL x x x x x         :mes - ,                 (58)                            is 

called the absolutely continuous closure of set x  obviously the set   xxCLac   is always closed 

and one has   

Lemma (1-2-15) [96]: 

Let  .  be a scalar R-function which has the representation (10) then      acacac CLS    

Proof:  

If    acacCLx   then there is an 0  such that    , acmes x x             

     , , 0ac ac acx x x x                                                    (59) 

Hence     acac SSx   which yields      acacac CLS   conversely if      acSx  then 

there is an 0  such that    , 0acx x       then  , 0ac x x      using                     

 ,x xac        
 

   ,
, 0

ac
ac ac

x x

d t
x x dt

dt  


   

  
               (60) 

 and proposition (1-2-11) (i) and (vi) one gets  

            ,ac x x    
      

1
0 0, Sm i dx x ac

    
             (61) 

Hence    00  dtitSm   for    . . , aca e t x x      . However by definition of the set 

 ac  one has   0 0Sm i dt     for all     ac   which implies 

    , 0acmes x x       
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Hence   acacCLx   or equivalent      scacac SCL  . 

Proposition (1-2-16) [96]: 

Let A be a simple densely defined closed symmetric operator a separable Hilbert space 

with    AnAn   . Further let  0 1,   H,  be a boundary triple of *A with Weyl function 

 .M  If  
1

N

k k
h


  ,  N1  is a total set in H  then the absolutely continuous spectrum of 

the self-adjoint extension 0A  of A is given by. 

    
khacac

N

kac MCLA  10                                                                   (62) 

Theorem (1-2-17)[96]: 

Let A  be a simple densely defined closed symmetric operator on a separable Hilbert 

space h  with    AnAn   . Further, let  0 1,   H,  be a boundary triple of *A   with Weyl 

function  .M . 

If  
1

N

k k
h


  ,  N1  is a total set in H , then for the self-adjoint extension  

0A  of A  the following conclusions are valid :  

(i) The self-adjoint extension 0A of A  has no point spectrum within the interval  ba,  . 

i.e.,       baApp ,0  if and only if for each Nk ,...2,1  one has  

                                               0lim
0




iyxyM hk
y

                                              (63) 

for all  bax , . In this case the following relation holds                                                                                                                                    

                   
   

 
   baM

M

baA
baA hkac

N

k

hkac

N

k

c ,
,

, 1

1

0
0 




 




                       (64) 

(ii) The self-adjoint extension 0A  of A  has no singular continuous spectrum within the 

interval         baAeiba ac ,..,, 0  if for each Nk ,...2,1  the set     baMhkac ,

is countable in particular, if     , ac hka b M  is countable.  

(iii) The self-adjoint extension 0A of A  has no absolutely continuous spectrum within the 

interval  ba,  .i.e.,       baAac ,0  if and only if for each Nk ,...2,1  the 

condition 

        00  ixMSm hk                                                                            (65) 

holds for a.e.  bax , . in this case we have                            

       0 , ; ,s sA a b M a b      

Proof: 

(i) If condition (65) is satisfied for all  bax ,  and all Nk ,...2,1 , then a simple 

computation shows that  lim 0hk
z x

z x M


   holds for all  bax ,  and each Nk ,...2,1  

too. Therefore     0,  baM hkpp  for  Nk ,...2,1  whichyields     0,;  baTMpp  

theorem (1-2-14). Implies  0p A    , 0a b    which yields     0,0  baApp .   
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(ii) Conversely if     0,0  baApp then     0,0  baAp  again by theorem (1-2-14) we 

find     0,0  baApp therefore     0,0  baApp  for each Nk ,...2,1 . However this 

implies that    lim 0hk
z x

z x M z


  which yields   0lim
0




iyxyM hk
y

for all  bax ,  

and each Nk ,...2,1 . The first of relation (64) is consequence of 

     000 AUAA cpp    and  0pp A    , 0a b  . The second part of relation (64) is a 

consequence of theorem (1-2-18) which shows that                          

       0 1 0; ; , ,N

kA M M A sc ac                                       (67) 

and      000 AUAA acscc   .Both facts imply that     baAc ,0   

                        baAbaAbaMM chkac

N

khkac

N

k ,,, 0011               (68)  

Which proves (64)  

(ii) By (53) we gets that        hkhkscschkhkac MscSSS   ,
. Therefore if 

   baM hkac ,  is countable, then so is    baS
hkac ,   this yields that the singular 

continuous measure   schh,
.  is supported within the interval  ba,  on a countable set. However 

this implies that   0,
,

 schk
ba  for each Nk ,...,2,1  and every Hh  one has 

 which yields   0, 
sc

ba . Therefore by lemma(1-2-9) one gets   0,
0

baE sc

A  

which proves     0,0  baAsc . If   hkacMba \,  is countable, then by 

     hkachksc MbaM  \,  the set  hksc M   is countable too which completes the proof (ii). 

(iii) If for each Nk ,...,2,1 the condition (65) holds for a.e.  bax ,   each 0   one has 

     , ,ac hkmes x x M a b        hence      0,  baMCL hkacac  taking proposition (1-2-

16) into account we find     0,0  baAac . Conversely if     0,0  baAac  then proposition 

(1-2-16) for each Nk ,...,2,1 we have           0,,  baMCLbaMCL hkacachkacac  

Which verifies condition (65) for a.e  bax , . Using      00 , AbaA s   and  

     0 0;s sA M A      which was proved in theorem (1-2-14) 
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