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Abstract

The study discusses the proof of and symmetric application of Cases sum rules for Jacobi
matrices. Of special interest is a linear combination of these sum rules which have strictly
positive terms. The complete classification of the spectral measure of all Jacobi matrices J for
which J-JO is Hilbert space —Achmidt. The study shows the bound of a Jacobi matrix. The
description for the point and absolutely continuous spectrum, while for the singular continuous
spectrum additional assumptions are needed. The study shows and prove a bound of a Jacobi
matrix. And we give complete description for the point and absolutely continuous spectrum,
while for the singular continuous spectrum additional assumptions are needed, we prove a
characterization of a characteristic function of a row contraction operator and verify its defect
operator. We also prove a commutability of an operator of this row contraction.
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Section (1-1): Spectral Form for Jacobi Matrices:

The case of some rules and were efficiently used to relate properties of elements of a Jacobi
matrix of certain class with its special properties. For instance spectral data of Jacobi matrices
being a Hilbert space-Schmeidt perturbation of the free Jacobi matrix were characterization
[42,101,135] and we suggest a modification of the method that permits us to work with higher
order sum rules. We obtain sufficient conditions for a Jacobi matrix to satisfy certain constraints
on its spectral measure. We consider a Jacobi matrix [129,124].

b, a, O
J=1J(ab)=|a, b

Where a={a, },a., and b={b },b e [ , We assume that J is a compact perturbation of the
free Jacobi matrix J,
010
Jy=l1 0 (1)

d
A scalar spectral measure & =45(J) is defined by the formula ((J —z)eo,eo) =J'% with

zell\l], the absolutely continuous spectrum 5aC(J) of Jfills in [-2, 2]and the discrete
spectrum consist of two sequences {xf}with properties X;<-2, X, —>2 and
X[ >2, X{—>2

Let 0, ={a, —a,,} for a given a and k e Nwe construct a sequence 7, (a)by formula
7 (a), =a; —a;..a;,_, Where o =a—1 and 1 is a sequence of units

Theorem (1-1-1) [87]:
Let J = J(a,b) be a Jacobi matrix described above. If
(1) a-lbe L"”l,éa,ab el?

(i) 7 (a)el k=3[(m+1)/2] )
m_f
Then (i) jgzlog5'(x).(4—x2) 20 > —oo
m+1/2
(i)x (¥2-4] <o ©)
J
When m =1 the theorem gives the fact of theorem (1-1-1)

Proof:
Define ¢,(3) as ¢, (3) =0 (6)= @1 (8)+ @r, (6)
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B 2 1 5 mt .
—Ej.zlog—g,(x).@—x ) 2dx+Zj:Gm(xj ).
We have to show that ¢, (J)< . We put a, = {(a, ), }anday, = {(a}, ), }, where
BEY K<N, v % k<N,
R R IR
Define sequences by, , by, in the same way (of course, with 1's replaced by 0's).
Let J, =J(a,,by). As we readily see, 4, -1, b, -0, @a, &b, —0,and 7, (ay)—0

in corresponding norms, as N — oo by the Lemma
(1-1-4) below, we have for N'=N —-m

W (3) =¥ (30)| Swm (@l by ) < Colla =1, +lby ..

Hoay |, +loby, + X[ (dw)})
or v.(Jy)—>w,.(J),asN -
on the other hand (J, —z)" —(J—-z) forzell \R, and consequently &, —& weakly
B (5)< lim,int ¢, (5,) and lim g, ,(5)=¢.,(5) we bound the latter quantity
W2 (J Z‘G ( 1 <C (“a 11 +||b||m+1) with some constant C, . Summing up we obtain

m+1 m+1

(0(5) <limy supe(8, ) =limy supy (I ) = Ligll//(JN )=w(J)
The proof is complete. It is easy to give simple conditions sufficient for y, (a)e L" for the

instance put
(A (a))j =0, +..+a,,,—(k-1)a;, then relations a-1eL™" 0, eL* and A (a)e "™

2(k,m)=(m+1)}(m+2-k) imply thaty, (a) € L". In particular we have the following corollary.
Corollary (1-1-2) [87]:
Theorem (1-1-1) holds if conditions (i), (i) are replaced with

A (@)e 2™, 2(k,m)=(m+1)/(m+2—k), where k = 5{m7+1} we observe that relations (i)

and (ii) are trivially true in the case of discrete Schrédinger operator i.e., when J = J(1, b).
Corollary (1-1-3) [87]:
Then inequalities (i’)and(ii’) let holdJ = J(L,b). If be L™ ,ébe L?, the  corollary is

still true ifb e L™? ' m being even. The proof is a sum rule of a special type. First we obtain it
assuming rank (J - JO)< oo . Applying methods we see that

1

Zrz log %-(4— Xz)m% dx+ ;Gm(X?F va(d)
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1 3
Where ,(3)=w,(a,b) and G, (x)=(-1)""C,(x"-4] Z+o(x*-4)"2 with xeR\[-2,2], C, being
a positive constant. where

V/m(J):tr{Zm: (_1)k+1 (J 2% _Jgk)_ (Zm—l)!!log A} @)

Lt 2Kty (2m)n
Where A=diag{a, } and 6;‘1 = m—” Notation k!! is used for “even” or “odd” factorials.
(m—k) 1k
Lemma (1-1-4) [5]:
Let J =J(a,b) we have
[(m+1)/2]
v (3)<C, [Ila—ﬂlmﬂ + ol +10al, +lobl, + 3 | 7 (a) Hl] ®)

Where C, depends on T only. Above, norms ||.||prefer to the standard L° —space norms. We

begin with considering expressions tr (J 2 Jgk) arising in (4). DefiningV =J - J, = J(a—l, b)
we have _
tr[J?-k JZk] trz s valL.vaip

i+.+1,=2k-p
We prove the lemma in steps.
Proof:

First we bounded summands corresponding to P=mT+1,m in [87]. We get

\tr(\/PFp(JO)}s”\/PFp(JOjsl <[|F. (3, ).

el <, <Colla-1r: +[blr) ©)

m+1
With the constant depending on |[\/|| Similarly |tr | <Cy 4 a—1y7. let

PIl and for these P°®
S1

p =3,m now. As we already mentioned in [134]
p . — .
VP = Z(S' p,;(ab)+p,; (ab)s ‘).
j=0
It is easy to show by induction that the polynomials Ppyp(a, b)are particularly simple. Namely
Pp’p(a, b) = aa(l)...a(p_l) y|e|ds that
trv PF, (J,) = (<1)° » (2m -1t

2p(2m)1!

_ 1y (2”2 D (e (ap)+P, (ab),)

gt
:( )ZJ:]JJrla

2p 2m

LAVASN IS
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Since trV *J,, =0 for s> p+1. Hence tr(v "F(30)+ (-2 —(ir&:n;)”"apj
4 (2m 1
_( 1)“%2 [ —aja;,..a,4 andwe obtain that

trvV°F, (JO)+(—1)

ot (2m-1) 11 N
2p(2m) N
Where C,,depends on p,m and sequences y, (a) are defined in [134]

<culp, @] 0

Observe that »,(a)=0 when p=1. Furthermore we have for p = 2that

Z(“Jz_ajam) ;Z(a - 2a, 0‘J+1+0‘J+1)

J J

1 1
= EZ(“; _“m)z = E”aani

i
So the left hand-side of (7) for p =2can be estimated by Cl3||aa||§. It is also clear that inclusion

ael™and odael® give that y (a)el’ for p>m/2+1. Indeed we have

a’ -aay Zapk(a i J (i) s

The terms in the Iatter sum look like a(l)...a(zp_l)(a—a(ip)) for some i:(il,...,i ) Obviously

a—a, =a—a, =0ae L’ Applying the Holder inequality > a,..a,,, <Z(Z—aJkJ with
k

=1 Hj
Ak :‘(aij )k ., —1 we get that

.q; =2(p-1) for j=1,p-land a,, :‘(a )

Hap —aa(l)...a(p,l)ul < C14||8a||z +||a||2(p 1)

Which is finite for p>m2+1. Thus gathering the above argument which is complete( see [134]
)we complete the proof of the lemma
Lemma (1-1-5) [87]:

Let i:(il,...,ip) and )i, = nthen

[ b _\/pqn Piv/ L f\/ L2 Pz}‘/'-s P3
VIEMIP =VPIl+ SC apvi e, 0 by
L+L,+L3=p
Py+ P2+ pPs=n

+Y AN 3,08,V 3,

Where p=(p,, p,, p;),1=(L,,L,,L,) and A ,B,,C, are some bounded operators
Lemma (1-1-6) [87]
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Let i =2k — pwe have fir(va}..va g —v 3¢ | <C,(laal, +|ob], )

With C, depending on|V| only. The lemma exactly bounded ,we may assume that operators V
and J, to commute we estimating v, (J)

2m (2m—1)!!
'(J)=t VPE (J,)——-—I |l +a 8
vi(9) {z )= Gyt 90 +a)} ®
Where & =diag {a, }=A -1 and
p _ N %%—1(:;; 2k—p
F (‘JO)_ Z 22k+1 2m-1 2k‘]0
k=[(p+1)/2]

HereC/? is a usual binomial coefficient, observe that for p > m-+1 we have

ity o, 00)) < R Qo v, <Culla-as + ol
Where ||, is the norm in the class of nuclear operators, hence it remains to bound the first m
terms in (8) we have

log(l+a)= zzml (_1gp+l& + o(&zm”)

p=1

Set J,,

following lemma holds.
Lemma (1-1-7) [87]:

Wehave F,(J,)=(-1)

to be a symmetric matrix with 1’s on p-th auxiliary diagonals and o’s elsewhere the

o (2m 1)1

2p(2m)n"°P
Combining this with explicit form of V Pand the series expansion for Iog(l +&)We get the
required bound (7).

Section (1-2): Spectral Properties of Self-adjoint Extensions
Let A be a closed symmetric operator on a separable Hilbert spaceh. If A has equal

deficiency indices ni(A) :dim(h 0 ran (A +il )) then A has a lot of self-adjoint extensions.

These self-adjoint extensions can be labeled by the so-called Weyl function M() [82, 83, and
84]. The generalization is based on concept of a boundary triple IT= {‘EH,FO,Fl} for A" being an
abstract generalization of the Green’s identity. Here #is a separable Hilbert space with dim
(#)=n, (A) and T, and T} are linear mapping from dom(A*) to % so that Green’s identity is
satisfied [108,119].

The problem is the following. Let M() be the Weyl function of a certain self-adjoint
extensions A, of A, introducing the associated scalar Weyl function M, (.)=(M()h,h), he %
is it possible to localize the different spectral subsets of A knowing the boundary values

26
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Mh(x+i0), x el of the associated scalar Weyl function. Let% be separable Hilbert space.

Recall that an operator function F(.)with values in [#] is said to be a Hirglotz or Nevanlina
function or R-function if holomorphic in 1  and for everyz el , the operator F(z)in #is
N (F)-F(2)) | |
dissipative i.e., Sm(F(z)): P >0. In the following we prefer the notion R-
i

function. The class of R—functions with values in [#]is denoted by R,, .If F()e(R,,)then there
exist bounded self-adjoint operator L in K, a bounded non-negative operator R>0 with
R|K D #t=0such that

1

1
F(z)=C,+Cz+R? (I, +zL)(L-2) RZ|#, zell, 9)
Denoting by EL(.) the spectral measure of the self-adjoint operator L one immediately obtains
from (9) the representation

F(z):c0+clz+T[t%_ t )dZ(t),2eD+ (10)

z 1+t°

Where Z() is an operator valued Borel measure on ‘R given by
F

1 1
dY (t)=(1-t*)R?dE_ (.)R? ,tel (11)
F
the measure » () is self-adjoint and obeys
F
+00 1
t 12
J i Z O] (12)

—00

In contrast to spectral measures of self-adjoint operators it is not necessary true that ran Z(Sl IS
orthogonal to ran (252 ) for adjoint Borel sets ¢, and o, .
However the measure Y () is uniquely determined by the R-function F(.).

F

The integral in (10) is understood in the strong sense in the following Z() is called the spectral
F

measure of F(.) defined by

>(0t):t>0

F

>(t)= t=0 (13)
" ~-3(t,0):t <0

F

The distribution function () is strongly left continuous and satisfies the condition
F

27
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SO=>0) > 6)<> (t),~o<s<t<w

F F F F

The distribution function Z() is called the spectral function of F()

F

We note that the spectral function Z(.)can be obtained by the Stieltjes transformation:
F
t

%;(t+0)+;(t)—%;(s+0)+2(s):w -yLnEJSm(F(x +iy)px, tsel  (14)

0 1 .
Where it is used that the spectral function is strongly left continuous.
A will always denote a closed symmetric operator with equal deficiency indices n, (A)=n_(A)

[97,140,147,148].

We can assume that A is simple. This means that A has no self-adjoint parts. Definition (1-2-1)
[96]:

A triplelT= {?H,Fo,l“l}consisting of an auxiliary Hilbert space #and linear mapping

I :dom(A*) —%H.i=0,1 is called a boundary triple for the adjoint operator A" — %, i =01 is
called a boundary triple for the adjoint operator A™ of A if

Q) The second Green’s formula takes place
(A*, f)—( f, A*g) =(I,f.rg) - (I, f.Ig), f.ge dom(A*) (15)
(i)  The mapping I' = {FO,Fl}: dom(A*)—> H @D His surjective
Definition (1-2-2) [96]:
(1)  Aclosed linear relationd in® is closed subspace 6 of H®H.
(if)  The closed linear relation & is symmetric if (g, f,)—( f,,g,) =0 forall
{fLohif,.0,}e0
(iii)  The closed linear relation @ is self-adjoint if it is maximal symmetric.
Definition (1-2-3) [96]:
Let {#.I",, T, }be a boundary triple for A
0] for every self-adjoint relation & in*H we put
D’{f edom(A"):T, f, I} f €6} A’ = A'|D (16)
(ii)  Inparticular we set A = A% i=01,if6,,i=01
(iiiy  1f @ =G(B) where B is an operator on % ,then we set A% A’
Proposition (1-2-4) [96]:
Let {?H,Fo,lj} be a boundary triple for A’ then for every self-adjoint relation @in% the

operator A’ given by definition (1-2-3) is self-adjoint extension of Athe mapping 6 +— A’ from
the set of self-adjoint extensions in H onto the set Ext,of self-adjoint extensions of Ais
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bijective. It is well known that Weyl function are an important tool in the direct and inverse
spectral theory of singular Sturm-Liouville operators.
Definition (1-2-5) [96]:

Let {#.I,,I,}be a boundary triple for the operator A". The Weyl function of A
corresponding to the boundary triple {#.T;, T, }is the unique mapping
M(): p(A,) = H satisfying

1—‘lfz :M(Z)Fofz’ fz GNz' ZEP(AO) (17)

Where N, = ker(A* — zl)above implicit definition of the Weyl function is correct and the Weyl
function M(.) is a R-function obeying

o€ p(Sm(I\/I (I)))
Definition (1-2-6)[96]:
A closed linear relationd in* is called boundedly invertible if the inverse relation

0" ={g fleHxH:{f,ge b} is the graph of a bounded operator defined on®H . we say Aell

belong to the resolvent set p(6) if the closed linear relation 8— AT = {{f,g—Af }: {f,g}e 8}is
boundedly invertible.

Proposition (1-2-7) [96]:

Let A be a simple closed densely defined symmetric operator in h. Suppose that {?H,Fo,lj}
is a boundary triple for A" M () is the corresponding Weyl function , @ a self-adjoint relation in
# and 4 € p(A,). Then the following holds.

(i) < p(A?)ifand only if 0 p(0—M(2)).
(i) A€o, (A”)ifandonly if 0 5. (6-M(1)),7=p.c

If A is a simple symmetric operator then the Weyl functionM(.) determines the pair
{A, A} up to unitary equivalence. We shall often say that M(.) is the Weyl function of the pair
{A Aj}or simply of A;. We can prove M, (.)andM, (.)with values in [#] and [x,] are
connected via

M,(z)=K'M,(z)K + D (18)

Where D=D"e[#,] andK e [#,,% ] is boundedly invertible. With each boundary triple we can
associate a so-called y -field y (.) corresponding to  is defined by

y(2)=(ToN, ) tH >N,z e p(A,) (19)
One can easily check that
7(2)=(A-2)(A-2) 7(%).22, € p(A) (20)

And consequently 7() isa y-field. The y -field and the Weyl function M()
are related by

M(z)—M(zO)*:(z—Zo)y(zo) r(z),  zz,ep(A) (21)
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The relation (21) means the M() isa 6, -function of a pair{A, AO}.Further we note that if A is
simplethen N,,z e p(AO) is generating with respect to A, too .
Let xbe a Borel measure on [J . A support of «zis a set S such that ,u(D \S):O we note that

ScS implies that Sisa support too. Measures g and von ‘R are called orthogonal if some of
their supports are disjoint. The topological support S(,u) of ,. is the smallest closed set which is
a support of ,, .According to the Lebesgue-Jordan\decomposition = g + by, pty = piy, + phg -
Where e, 1, 14, and are the corresponding singular pure point, singular continuous and
absolutely continuous measures of u respectively. We set

S;(1)=S(wr ) T=s,pp,scac the set S, (u)S,, (1) S (1) S, (1) are closed and called
singular, pure point, singular continuous and absolutely continuous supports of ., we denote
that the closed supports S, (u),S (1), S..(u) and S (u) are not generally mutually disjoint to
obtain mutually disjoint supports we introduce the following sets .

So(u)={tel :du(t)dtexistsand dx(t) = oo} (22)

S ()=t (1) =9 e

Ss’c(y)z{teD :dy(t)d(t)existsdﬁ—fo=wand y(t)=o} (24)
S;C(y)z{teﬂ :%exists and O<d,u(t)/dt<oo} (25)

Where the distribution function y() is similar to (13) defined by it turns out that. Since the sets
St (,u) ,T =5, pp,sc are of Lebesgue measure zero and mutually disjoint we find that for any
Borel set y — R one has

xSy ()= 4 (2) T =, pp,sc,ac (26)

The sets S(u), S, (x), S, («), and S. (u)singular pure point singular continuous and

absolutely continuous supports of u respectively. We note that

Spp(,u): S;pi,u)and ST(,u) c ST'(,u) cS (,u) , T=5,5C,aC (27)
In general it is not possible to replace inclusion by equalities, let now Z() be a measure with

values in {?H} the measureZ(.)admit a Lebesque- Jordan  decomposition

=357+ 3T As above the notation
5, 5=53".5,, Y =555, 3 =53 Jand 5% )=5(%,, )

stand for the singular pure point , singular continuous and absolutely. We get

Sp(z )={T€D}:Z({T})¢O (28)

30
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we have S (3 )=S, (> )and S, s,,(> ) with each operator-valued measure
> (.) we can associate a scalar measure Zh : =(Z(.)h,h), he#. In the following we are
interested in the problem whether the spectral properties of the operator valued measure Z()
can be characterized by a family of scalar measures. To this end let 7 = {h}::1 , 1<N <+

be a total set in * with we associate the family z v, , of scalar measures. Let us introduce
the following sets.

s:(X7) =i, ) (29)
St (Z T)=UE:15,Sp (th ) (30)
si(X.7)=use (T, )1sw(X) (31)
se (X r)=uise (X, J1si(X) (32)

Lemma (1-2-8) [96]:
Let # be a separable Hilbert space and T = {h, |;', ,1< N <-+oobe a total set in . Then

the sets SS’(Z; r),S,')p (Z r),SS'C (Z r) and S/, (Z z’) are singular ,pure point ,singular
continuous and absolutely continuous supports of Z() respectively i.e.,

Z(;(msr'(z; r)):zr(;(),r:s, pp, SC, ac (33)

For any Borel set y < ‘R. In particular the following relations hold.
sy =8 (Z; r) and
Sp(z )gS;(Z;r)gS(Z ),r:s,sc,ac (34)

Proof:
By the Lebesgue-Jordan decomposition one easily gets that for each h € H We have

(Z( )h,h)zz (x),7=spp,sc,ac (35)

For any Borel set y € ‘R where Z Jarises from the Lebesgue-Jordan decomposition of the

scalar measure Zh .). Let 7=S. Since mes SS’(Z_ 1') =0
We get

(Z(znsi(Zr))non )= 2, (208 (X e)) =2, (rnsi(Z 7)) o)

For any h, €z using (35),(36) and

> ( 208(% T)) _ z( 208X 1)nsiY, )
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=2 (;‘“S (Z ))=Zm(x> (37)
We find (Z (st ) ) ( )hk’th for any h, er. Since 7 is total we finally

obtain Z (;( NS, (Z z’)) = ZS:(;() for any Borel set y €1 . Similarly we prove the statements

for T = pp, sc, ac.
Let XGS’er Then there is h ersuch that XeS’(Z ) Hence

th({x}):(Z({x})hk,hk)asO which yields Y (x})%0 or xeS,(} ), ie. s ( )gSp(Z)
conversely if x e Sp(z ) then there is a h € # such that Zh x§)= 0. If this is not the case then
for each h eTone has zh({x}):(Z({x} h)=0. Since Tis total this yields

(E(txhoh )=, (x))=0

For each h e %t Contrary to the assumption. however, if there is a h, e T such that * > ({x})=0

then xe S, (Z;r),i,e.sp(z )CS'pZ 7 hence S (z ):SQDZ; 7 . Further from (33) we get

(X )es (Z ) T =S5, pp,sc,ac

Taking (27) into account we get S/ (Zh )g S(Zh ),2' =s,sc,ac,sc for each h ez . Since
SEh )g S(Z ) for each h, €T we get S; (Z;r) which immediately proves (34). Taking

(20) and (21) into account we obtain that C,= 0 which leads to the representation.

M (z) C+I[tz 1+tjdz zell (38)

Lemma (1-2-9) [96]:
Let A be a simple densely defined closed symmetric operator on the a separable Hilbert
space with n,(A)=n_(A). Further, let IT=[%,I,,T; |be a boundary triple of A" with Weyl

function >"(.). If E, () is the spectral measure of A, = A’|ker(T, (e Ext,) and )_ () that of the
integral representation (38) of the Weyl function »"(.). Then the measure E, () and D’(.) are
equivalent. In particular one has 5, (A,)=5.(>" ) .

Theorem (1-2-10) [96]:
Let A be a simple densely defined closed symmetric operator on a separable Hilbert
space h with n, (A)=n_(A). Further let IT=[%,I",,I;]be a boundary triple of A"with Weyl

function M ()
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If E, ()is the spectral measure of A, = A"kerI,(e Ext,)and " (,)that of the integral
representation (38) of the Weyl function M () then for each total set

T={h}" 1< N <+ in ¥ the sets sg(z;z),s;p (21) ,S. (Z;T) and S/, (Zr)

Singular pure point, singular continuous, and absolutely continuous supports of EAQ(.)
respectively, i.e. we have

E, (208 (7)) =Ex (2) (39)
For each Borel set y R . In particular the relations &, (A)) = Sépz;f and

S, (A)cS!Y> r<5(A),7=s,scachold.
Proof:
Since by lemma (1-2-8) the sets S;(&;7),z=s, pp,sc,acare supports of Y (), one
immediately gets from lemma (1-2-9) that the same sets are supports of E,, (.)of the same type,

i.e.,, (39) holds . If x e S,;p (Zr) then there is at least one k =1,2,..., N such that

(Ex (X)) 7 (i) her () B ) =0
Hence x € 5, (A,) conversely, ifx e 5, (A, ) then due to the fact that y(i)7 is
Generating for E, (.) then is at least one k =1,2,....,N such that

(EA) ({X})J/(l) he,7 (i) hk)¢0

Hence xeS,» r which proves 5P(Ab):S;p(Z;T) the relations 5(A0)g8;(z;1)g

S

6(A0) , T =S,SC,ac are consequences of lemma (1-2-8) and lemma (1-2-9) .we characterize the
spectral properties of the operator-valued measure Z() using the boundary behavior of the

Weyl-function M() A first step is to develop a corresponding theory for scalar measure u
which satisfies

jt) (40)
w1+t

Let us associate with x the Poisson integral
daut
V(z):J.LZ(),z:x+iyeD+ (41)
a(t=x) +y?
Which defines a positive harmonic function in [J .. Conversely it is well known that each
positive harmonic function V,(z) in [, admits the representation V,(z)=ay +V(z) with a>0

and V(z) of the form (40) and (41). Below we summarize some well-known facts on positive

harmonic function
Proposition (1-2-11) [96]:
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Let x be a positive Radan measure obeying (40) and let V(z)be a positive harmonic
functionin  z=x+iy €[l , defined by (41). Then one has.
(i) for any x el the limV (x+io)=limV (x+iy) exists and is finite , if and only if
symmetric derivative D, (x)
u(x+e)—pu(x —¢)

D,(x)= !EILT(} » (42)
Exists and is finite. In this case one has
V(x+io)=7zD, (x) (43)
(ii)  if the symmetric derivative D, (x) exists and is infinite the V(z) - +woas
7> X

(iiiy  for eachx e R one has Sm(z —xV(z) — u({x}) asz —> x
(iv)  V(z) converges to a finite constant as z —>x, if and only if the derivative
d (t)dt exists at t = x and is finite.

The symbol —> means that the limit limv (x +re“9), X R exists uniformly inf e[e, 7—¢]

for each ¢ e (0,7[/2). Proposition (1-2-11) allows us to introduce measures satisfying (40) the

following sets z =(x +iy )

S{(u)={xel :V(z) >} asz —>X (44)

Sy (1)=xel] :SmZILrIl(z-x)V(z)>0 (45)
Se(u)={xel :V(z) >wand (z—x)V(z) >0as z—>> x| (46)
Si (1) ={xel : V(x+i0)exists and 0<V (x+i0) <o} (47)

Obviously the sets S/(z)and S («)as well as S} (u), Sl (u), and S (u)are mutually disjoint.
By proposition (1-2-15) one immediately gets that S| (x)=S; (x) and

PP

S (1) =87 (1) =S(n) (48)
Indeed the relation S/ (x)= S, (x)is a consequence of (iii).By (ii) we get

Si(u) = s!(u)
Similarly we prove S (u)cS.(u) using (i) and(iii).Finally the relation S (z)c S ()
follows from (i). We note that it can happen that S (u)= 0 and the inclusion S (u)c S (x) is
strict even if u,=0. Furthermore we note that from (26) and the inclusion

St ()= Sy (#), 7 =s,pp,sc,ac we find that

w(x S! (1)) = m, (x) (49)
For any Borel set y [1 . Now we are going to characterize the spectral parts of the extension
A, by means of boundary values of the Weyl function M().
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Using the integral representation (38) of the Weyl function we easily get that
y
V.(z)=|———d t)=Sm(M, (z)),zell, heH (50)
()= [y T 0= sm(, 2)
Where M, (z)=(M(z)h,h),zel], hewH (51)

The function M, (.)is a scalar R-function. Since Mh(.)arises from the Weyl function we call it
the associated scalar Weyl function V, () is imaginary

part of the associated scalar Weyl function Mh(.) and the theory developed we can relate the

boundary behavior at the real axis the imaginary part of associated scalar Weyl functions with
the spectral properties of the self-adjoint extension A,. To this end in addition to (29) and (32)

we introduce.

(3]s, o

i (2 7)=lusi (2, ) 3
st () =utsi (X, Nsn(X) (54)
sL(Xr)=us (X, N2 (55)

By definition the sets S (Zr) are disjoint. They holds for S’/ (Zr) Furthermore we denote
that the sets S{’(Z_r) have Lebesgue zero, i.e., mes
ST"(Z_T) =0,7=s, pp,sc., it turns out that the sets S; (Z;r) in theorem (1-2-14) can be replaced

by the sets S{’(Z;r)

Theorem (1-2-12) [96]:
Let A be a simple densely defined closed symmetric operator on a separable Hilbert
space H with n,(A)=n_(A). Further, let TT={#.T',,I;} be a boundary triple of A”with Weyl

function M(). If E, () is the spectral measure of A, =A’lkerT,(cExt,) and total set

T={h ], 1<N <+ in # the sets S (Z ) SSP(Z;T),SS’Q(Z;) and S;(Z;T) are

singular ,pure point , singular continuous and absolutely continuous supports of E%(.)
respectively , i.e., we have

EAO(;(msr”(z;r))zE,io(Z),r=s,pp,sc,ac (56)

For each Borel set e[ . In particular ithold &, (A,) =S, (Zr) and

5.(A)c S:(Z;r)gd(%) ,T =8,5C,ac.
Proposition (1-2-13) [96]:
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Let ¢(.) be a scalar R-function. Then for almost all x e[ the limit ¢(x+i0)= lim
y =0

@(x+i0) exists and moreover in this case one has ¢(x+i0)= lim ¢(z).

Theorem (1-2-14) [96]:
Let A be a simple densely defined closed symmetric operator on a separable Hilbert
space h with n (A)=n_(A)Further let TT={HI",,I’}be a boundary triple of A"with Weyl

function M(.)and let E %(O) be the spectral measure of the self- adjoint extension A" of A . If
r:{hk}s:l 1< N <+o0 is atotal set in # then sets Q (M;z), Q_(M;z), Q, (M;7) and
QaC(M;r) are supports of EAO(.) respectively. i.e., we have

E, (7nQ. (M;7))=E; (7)., 7=s,pp.,scac (57)
For each Borel set ye®RIn particular it holds &,(A)=Q,(M;z) and

5. (A)cQ
S, Ab)ggw;r) and &,
5. (A)) is empty.
Let 4(.) be aBorel measure on Rand let y =1 be a Borel set the set

CL, (x)=xcll :mes((x—g,x+g)mx)>OVg>5 (58) is
called the absolutely continuous closure of set x obviously the set CL, (x)e X is always closed
and one has

Lemma (1-2-15) [96]:
Let 4(.) be a scalar R-function which has the representation (10) then S, (u)=CL,.(Q..(#))
Proof:
If xe=CL,(Q,(#)) then there is ane> 0 such thatmes(x—&,X+£)NQ,. (@) =0
toe (X—&X+8) =t (X—&,X+8)NQ, (9) =0 (59)
Hence x & S(u,.)=S,.(x) which yields S, (u)c CL,.(Q,.(4)) conversely if xS, () then
thereisan & >0 such that (x—¢&,x+&)NQ,, (1) =0 then p, (x—&,x+&)=0 using

du(t
luac(x—g,X+8): /uac(X—E,X+€)mQac(¢)J‘(xfg,x+£)ﬂﬂac(¢) A(;f )

.(M;7)c 6. (A) for r=s,sc,ac. We note that the inclusions
(A) = Q. (M;7) of theorem (1-2-14) may be strict even if

t=0 (60)
and proposition (1-2-11) (i) and (vi) one gets

Hoe (X—&,X+8) = if(x—gvx+5)m9ac(¢) Sm(g(z+i0))dz =0 (61)
Hence Sm(g(t+i0))dt=0 foraete(x—e,x+¢&)NQ, (¢). However by definition of the set
Q. (¢) one has Sm(g(r+i0))dt>0 for all 72Q, (#)  which implies
mes((Xx—&,X+£) N, (¢))=0
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Hence x & CL,(€,,(#)) or equivalent CL,.(Q,.(#)) = S.(1).

Proposition (1-2-16) [96]:
Let A be a simple densely defined closed symmetric operator a separable Hilbert space
with n, (A)=n_(A). Further let IT={H.I',,I";} be a boundary triple of A”with Weyl function

M() If 7= {h, }E:l , 1< N <+oo is a total set in # then the absolutely continuous spectrum of
the self-adjoint extension A, of Ais given by.

82e(A) = Uiy CLc (@M, ) (62)
Theorem (1-2-17)[96]:

Let A be a simple densely defined closed symmetric operator on a separable Hilbert
space h with n, (A)=n_(A). Further, let TT={%.I';,T,} be a boundary triple of A~ with Weyl
function M (.).

If r={h ) ,1<N <+ isatotal setin #, then for the self-adjoint extension
A, of A the following conclusions are valid :
Q) The self-adjoint extension A,of A has no point spectrum within the interval (a, b) :

ie., 5,,(A))~(ab)=0 if and only if for each k =1,2,...N one has

lim yM w(x+iy)=0 (63)
y—
forall x € (a,b). In this case the following relation holds
5(A)n@b) v v
o b)=— =U,4 Q,.(M b 64
(Ao)m(a ) k}:(sz1 Qac(th)U Uk—l ac( hk)r\(a ) ( )

(i)  The self-adjoint extension A, of A has no singular continuous spectrum within the
interval (a,b),ie.5,.(A,)~(a,b)=6 if foreachk =1,2,...N theset Q. (M,,)~(a,b)
is countable in particular, if (a,b)‘Qalc (M, is countable.

(iif)  The self-adjoint extension A,of A has no absolutely continuous spectrum within the
interval (a,b) .i.e., &5,.(A)~(ab)=6 if and only if for each k=12,.N the
condition
sm(M,, (x+i0))=0 (65)

holds for a.e. x € (a,b). in this case we have
5, (A)n(a,b)=0,(M;7)(a,b)
Proof:
(i) If condition (65) is satisfied for all xe(a,b) and all k=12..N, then a simple
computation shows that lim (z—x)M,, =0 holds for all x < (a,b) and each k =12,..N

Z>>X

too. Therefore Q) (M, )~ (a,b)=0 for k=12,..N whichyieldsQ (M;T)~(a,b)=0
theorem (1-2-14). Implies &, (A,) (a,b)=0 which yields &,,(A;)~(a,b)=0.
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(ii) Conversely if 5,(A)~(a,b)=0then 5,(A))(a,b)=0 again by theorem (1-2-14) we
find 5,,(A )~ (a,b)=0therefore &, (A, )~ (a,b)=0 for each k =1,2,...N . However this
implies that lim (z —=x )M, (z ) =0which yields |jyy YM . (x+iy)=0for all x <[a,b]

Z—>>X y%O
and each k=12..N. The first of relation (64) is consequence of
S(Ay))=6,,(A S, (A) and 5, (A))n (a,b)=0. The second part of relation (64) is a
consequence of theorem (1-2-18) which shows that
5. (A)cQ (M;7)=u,Q, (M;7)=S5(A), 7 =5C,ac (67)

and &,(A,)=5..(A, J35..(A,).Both facts imply that 5, (A, )~ (a,b) <

UIL\‘:l Qac(M hk)u I’:‘:lQac(M hk)m (a’ b)g S(A))m (a’ b): 50 (Ao)m(a’ b) (68)

Which proves (64)

(i) By (53) we gets that S;C(th )= S’Ehksc )g sg’c(zhk Josc(M,, ). Therefore if

Q.. (M, )n(a,b) is countable, then so is S;C(th )m(a,b) this yields that the singular

continuous measure Zhh,sc(') is supported within the interval (a,b) on a countable set. However

this implies that thsc(a,b)zo for each k=12..,N and every he# one has

D i .(@b) =0 which yields > *(a,b)=0. Therefore by lemma(1-2-9) one gets E’(a,b)=0
which  proves (A )n(ab)=0. If (a,b)\Q, M, is countable, then by
Q. .M, )c(abhQ, (M, ) the set @_(M,,) is countable too which completes the proof (ii).

(iii) If for each k =1,2,...,N the condition (65) holds for a.e. xe(a,b) each £>0 one has
mes (X—&,X+¢&)NQ, (M, )n(a,b)=6 hence CL,(Q,.(M,))(a,b)=0 taking proposition (1-2-
16) into account we find 5, (A,)(a,b)=0. Conversely if 5, (A,)~(a,b)=0 then proposition
(1-2-16) for each k =1,2,..., N we have CL_(Q,.(M,,))~(a,b)=CL,.(22..(M,,))"(a,b)=0
Which verifies condition (65) for a.e x e (a,b). Using 5(A, ) (a,b)=6,(A,) and

5, (A) =, (M;7) = 5(A) which was proved in theorem (1-2-14)
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