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Abstract 

The study discusses the proof of and symmetric application of Cases sum rules for Jacobi 

matrices. Of special interest is a linear combination of these sum rules which have strictly 

positive terms. The complete classification of the spectral measure of all Jacobi matrices J for 

which  J-J0 is Hilbert space –Achmidt. The study shows the bound of a Jacobi matrix. The 

description for the point and absolutely continuous spectrum, while for the singular continuous 

spectrum additional assumptions are needed.  The study shows and prove a bound of a Jacobi 

matrix. And we give complete description for the point and absolutely continuous spectrum, 

while for the singular continuous spectrum additional assumptions are needed, we prove a 

characterization of a characteristic function of a row contraction operator and verify its defect 

operator. We also prove a commutability of an operator of this row contraction.  
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Section (1-1):  Spectral Form for Jacobi Matrices:  

The case of some rules and were efficiently used to relate properties of elements of a Jacobi 

matrix of certain class with its special properties. For instance spectral data of Jacobi matrices 

being a Hilbert space-Schmeidt perturbation of the free Jacobi matrix were characterization 

[42,101,135] and we suggest a modification of the method that permits us to work with higher 

order sum rules. We obtain sufficient conditions for a Jacobi matrix to satisfy certain constraints 

on its spectral measure. We consider a Jacobi matrix [129,124]. 
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Where   0,k ka a a   and  ,k kb b b   , We assume that J is a compact perturbation of the 

free Jacobi matrix 0J  
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0J                                                          (1) 

A scalar spectral measure  J   is defined by the formula   
 

0 0,
d x

J z e e
x z


 

  with 

z \ , the absolutely continuous spectrum  Jac  of J fills in [-2, 2]and the discrete 

spectrum consist of two sequences  jx with properties    2jx ,  2jx   and 

2, 2j jx x                                

Let  1 kka aa  for a given a  and Nk  we construct a sequence  k  by formula  

  1...k

k j j j kj
a        where 1a    and 1 is a sequence of units 

Theorem (1-1-1) [87]: 

Let  be a Jacobi matrix described above. If 

              (i)     1 21, , ,m

a ba b L L      

             (ii)     , 3, 1 / 2k a L k m                                                                 (2) 

Then                      
1

2 2 2log . 4
2

m
i x x dx


    

 

                            
1/2

2 4
m

ii x
j


                                                            (3) 

When 1m  the theorem gives the fact of theorem (1-1-1)  

Proof: 

       Define   Jm  as        ,1 ,2m m m mJ          

 baJJ ,
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We have to show that   Jm . We put   
kNN aa  and   

kNN aa  , where  
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Define sequences NN bb ,  in the same way (of course, with ,1 s  replaced by s,0 ). 

Let  NNN baJJ , . As we readily see, 0,,0,1  NNNN baba , and   0k Na    

in corresponding norms, as N  by the Lemma  

(1-1-4) below, we have for mNN   
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or                    NasJJ mNm ,  

on the other hand    
1 1

NJ z J z for z
 

    \R, and consequently  N  weakly 

   NmNm  1,1, intlim  and     2,2,lim mNm   we bound the latter quantity 
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jmm xGJ2,  1
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m
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m
baC  with some constant 2C . Summing up we obtain   

                         lim sup lim sup limN N N N N
N

J J J      


     

The proof is complete. It is easy to give simple conditions sufficient for  k a L   for the 

instance put    

    1 1... 1k j j k jj
A a k         , then relations 21,1 LeLa a

m    and    mk

k LaA ,2  

     kmmmk  2!1,2  imply that  k a L  . In particular we have the following corollary. 

Corollary (1-1-2) [87]: 

         Theorem (1-1-1) holds if conditions (i), (ii) are replaced with 

    ,,2 mk

k LaA       kmmmk  2/1,2 , where 
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1
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m
k   we observe that relations (i) 

and (ii) are trivially true in the case of discrete Schrödinger operator i.e., when  bJJ ,1 . 

Corollary (1-1-3) [87]: 

Then inequalities    iiandi   let hold  bJJ ,1 . If 1 mLb  , 2Lb , the        corollary is 

still true if
2mb L  , m being even. The proof is a sum rule of a special type. First we obtain it 

assuming rank    0JJ . Applying methods we see that  
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Where    baJ mm ,   and        
1 3

1 2 22 2
01 4 4

m mm

mG x C x o x
 

      with  2,2\ Rx , 0C  being 

a positive constant. where 
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Where  kadiagA   and 
  !!!!

!!~

kkm

m
C k

m


 . Notation !!k  is used for “even” or “odd” factorials.  

Lemma (1-1-4) [5]: 

Let  baJJ ,  we have 

   
 1 /2

1 1 1 2 2 1
3
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m a km m
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Where 1C  depends on T  only. Above, norms .
p
refer to the standard pL space norms. We 

begin with considering expressions tr  kk JJ 2

0

2   arising in (4). Defining  baJJJV ,10   

we have  
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We prove the lemma in steps.  

Proof: 

First we bounded summands corresponding to 
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, let 

mp ,3  now. As we already mentioned in [134] 
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It is easy to show by induction that the polynomials  baP pp ,, are particularly simple. Namely 

     11, ...,  ppp baP    yields that  

                         
 

  p

pp

p

p JtrV
mp

m
JFtrV ,00

!!22

!!12
1


  

                                        
 

 
    

ppppp

p
baPpaPtr

mp

m
,,

!!22

!!12
1 ,, 


    

                                        
 

   11...
!!22

!!12
1 


 pj

j

jj

p

mp

m
  

http://www.iprjb.org/


Journal of Statistics and Actuarial Research   

ISSN 2518-881X                                                               

Vol 5, Issue 1, No.2, pp 21 - 38, 2021                          

                                                                                                             www.iprjb.org 

 

25 

 

Since 0,0 s

p JtrV  for 1 ps . Hence    
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Where 12C depends on mp,  and sequences  k a  are defined in [134] 

Observe that   0p a   when 1p . Furthermore we have for 2p that 
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So the left hand-side of (7) for 2p can be estimated by .
2

213 aC  It is also clear that inclusion 

1 mL and 2La  give that  p a L   for 12/  mp . Indeed we have 
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The terms in the latter sum look like       
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k

p

j

q

kj

j

kp

k

k
ja

q
aa

1

,

1
...  with 

   12,,  pqa j
k

ikj j
  for 1,1  pj and  

2

1
,,  p

k
ikp qa

p
  we get that  

                                     

 12

12

2

214
1

11 ...


 
p

pp

p aC      

Which is finite for 12 mp . Thus gathering the above argument which is complete( see [134] 

)we complete the proof of the lemma  

Lemma (1-1-5) [87]: 

      Let  
piii ,...,1  and ni

s

s  then                             
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Where    321321 ,,1,,, LLLpppp   and kkk CBA ,,  are some bounded operators  

Lemma (1-1-6) [87] 
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         Let  
s

pki 2 we have    
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With 3C  depending on V only. The lemma exactly bounded ,we may assume that operators V

and 0J to commute we estimating  Jm   
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kC   is a usual binomial coefficient, observe that for 1 mp  we have  
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.  is the norm in the class of nuclear operators, hence it remains to bound the first m 

terms in (8) we have  

                                   
   12

2

1

1

~~1~1log 








  m
m

p

p

o
p

  

Set pJ ,0  to be a symmetric matrix with 1’s on p-th auxiliary diagonals and o’s elsewhere the 

following lemma holds. 

Lemma (1-1-7) [87]: 

     We have    
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Combining this with explicit form of pV and the series expansion for  ~log I we get the 

required bound (7). 

 

Section (1-2): Spectral Properties of Self-adjoint Extensions 

Let A be a closed symmetric operator on a separable Hilbert space h . If A has equal 

deficiency indices  n A  =dim   h ran A iI , then A has a lot of self-adjoint extensions. 

These self-adjoint extensions can be labeled by the so-called Weyl function  .M  [82, 83, and 

84]. The generalization is based on concept of a boundary triple  0 1, ,   H  for *A being an 

abstract generalization of the Green’s identity. Here H is a separable Hilbert space with dim 

   n AH  and 0  and 1  are linear mapping from dom  *A  to H  so that Green’s identity is 

satisfied [108,119].  

The problem is the following. Let  .M  be the Weyl function of a certain self-adjoint 

extensions 0A  of ,A  introducing the associated scalar Weyl function      H hhhMM h ,,..  

is it possible to localize the different spectral subsets of 0A knowing the boundary values 
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 0 ,hM x i x  of the associated scalar Weyl function. Let H  be separable Hilbert space. 

Recall that an operator function  .F with values in  H  is said to be a Hirglotz or Nevanlina 

function  or R-function if  holomorphic in and for every z   the operator  zF in H is 

dissipative i.e.,    
    *

0
2

F z F z
Sm F z

i


  . In the following we prefer the notion R-

function. The class of R–functions with values in  H is denoted by HR .If    HRF . then there 

exist bounded self-adjoint operator L in K, a bounded non-negative operator 0R  with 

0R K H such that  

               
1 1

1
2 2

0 1 ,kF z C C z R I zL L z R z


     H                              (9) 

Denoting by  .LE  the spectral measure of the self-adjoint operator L  one immediately obtains 

from (9) the representation  

                             0 1 2

1
,

1 F

t
F z C C z d t z

t z t







 
     

  
                     (10) 

Where  
F

.  is an operator valued Borel measure on R  given by  

                        
1 1

2 2 21 . ,L

F

d t t R dE R t                                                  (11) 

the measure  
F

.  is self-adjoint and obeys  

                                    H





 F

td
t 21

1
                                                         (12) 

In contrast to spectral measures of self-adjoint operators it is not necessary true that ran  1 is 

orthogonal to ran   2  for adjoint Borel sets 1 and 2 . 

However the measure  
F

.  is uniquely determined by the R-function  .F . 

The integral in (10) is understood in the strong sense in the following   
F

.  is called the spectral 

measure of  .F  defined by  

                 

 

 


























F

F

F
tt

t

tt

t

0:0,

0:0

0:,0

                                                                 (13) 

The distribution function  
F

.  is strongly left continuous and satisfies the condition  
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                                           tststt
FFFF
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*

 

The distribution function  
F

. is called the spectral function of   .F . 

We note that the spectral function  
F

. can be obtained by the Stieltjes transformation: 

          sstt
FFF

0
2

1
0

2

1
=   

0

1
lim , .

t

y
s

w Sm F x iy dx t s


         (14) 

Where it is used that the spectral function is strongly left continuous.  

A will always denote a closed symmetric operator with equal deficiency indices    n A n A 

[97,140,147,148]. 

We can assume that A is simple. This means that A has no self-adjoint parts. Definition (1-2-1) 

[96]: 

A triple  0 ,   1H, consisting of an auxiliary Hilbert space H and linear mapping 

 *:i dom A i  H , 0,1  is called a boundary triple for the adjoint operator H*A , 1,0i  is 

called a boundary triple for the adjoint operator *A  of A  if  

  

(i) The second Green’s formula takes place 

                      * * *

1 0 0 1, , , , , ,A f f A f f f dom A       g g g g               (15) 

(ii) The mapping     HH  *

10 :, Adom is surjective  

Definition (1-2-2) [96]: 

(i) A closed linear relation in H  is closed subspace  of HH . 

(ii) The closed linear relation is symmetric if    1 2 1 2, , 0f f g g  for all  

                   21 gg, ,, 21 ff  

(iii) The closed linear relation  is self-adjoint if it is maximal symmetric. 

Definition (1-2-3) [96]: 

Let  1H,  ,0 be a boundary triple for 
*A  

(i) for every self-adjoint relation  inH   we put  

                         DAAffAdomfD *

10

* ,,:                                 (16) 

(ii) In particular we set 1,0,,1,0,  iifiAA ii
i   

(iii) If  BG  where B is an operator on H ,then we set AAB   

Proposition (1-2-4) [96]: 

            Let  1H,  ,0  be a boundary triple for 
*A then for every self-adjoint relation  in H the 

operator A given by definition (1-2-3) is self-adjoint extension of A the mapping  A from 

the set of self-adjoint extensions in H  onto the set AExt of self-adjoint extensions of A is 
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bijective. It is well known that Weyl function are an important tool in the direct and inverse 

spectral theory of singular Sturm-Liouville operators.  

Definition (1-2-5) [96]: 

Let  1H,  ,0 be a boundary triple for the operator *A . The Weyl function of A 

corresponding to the boundary triple  1H,  ,0 is the unique mapping  

    H0:. AM    satisfying  

   001 ,, AzNffzMf zzzz                                                      (17) 

Where  zIAN z  *ker above implicit definition of the Weyl function is correct and the Weyl 

function  .M  is a R-function obeying  

                                               o Sm M i   

Definition (1-2-6)[96]: 

A closed linear relation in H  is called boundedly invertible if the inverse relation  

     gg ,, ff :HH-1  is the graph of a bounded operator defined on H . we say 

belong to the resolvent set    if the closed linear relation       gg ,:, fffT is 

boundedly invertible.  

Proposition (1-2-7) [96]: 

Let A be a simple closed densely defined symmetric operator in h. Suppose that  1H,  ,0  

is a boundary triple for *A  .M  is the corresponding Weyl function ,  a self-adjoint relation in 

H  and  0A  . Then the following holds.  

(i)   A  if and only if    M0 . 

(ii)  A

  if and only if   0 , ,M p c       

If A is a simple symmetric operator then the Weyl function  .M  determines the pair 

 0, AA  up to unitary equivalence. We shall often say that  .M  is the Weyl function of the pair 

 0, AA or simply of 0A . We can prove  1 .M and  2 .M with values in  1H  and  2H  are 

connected via  

    DKzMKzM  1

*

2                                                                             (18) 

Where  2H *DD  and  12 HH ,K  is boundedly invertible. With each boundary triple we can 

associate a so-called  -field  (.) corresponding to is defined by   

     
1

0 2 0: ,zz N N z A 


   H                                                      (19) 

One can easily check that 

        
1

0 0 0 0 0 0, .z A z A z z z z A  


                                               (20) 

And consequently  .  is a  -field. The  -field and the Weyl function  .M  

are related by  

           
* *

0 0 0 0 0, ,M z M z z z z z z z A                                  (21) 
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The relation (21) means the  .M  is a 2  -function of a pair 0, AA .Further we note that if A is 

simple then  0, AzN z   is generating with respect to 0A  too . 

Let  be a Borel measure on . A support of is a set S such that  \ 0S   we note that 

SS
~

 implies that S
~

is a support too. Measures  and v on R  are called orthogonal if some of 

their supports are disjoint. The topological support  S  of  is the smallest closed set which is 

a support of .According to the Lebesgue-Jordan\decomposition sacs  ,  scpp   . 

Where scpps  ,,  and are the corresponding singular pure point, singular continuous and 

absolutely continuous measures of  respectively. We set  

    acscppsTSS TT ,,,,    the set         acscpps SSSS ,,, are closed and called 

singular, pure point, singular continuous and absolutely continuous supports of  , we denote 

that the closed supports  sS ,     acpp SS ,  and  scS  are not generally mutually disjoint to 

obtain mutually disjoint supports we introduce the following sets . 

      0S t d t dt existsand d t      :                                          (22) 

     0ppS t t    :                                                                    (23) 

     
 

  0sc

d t
S t d t d t exists and t

dt


  

 
      

 
:                         (24) 

       
( )

0 /ac

d t
S t exists and d t dt

dt


 

 
      

 
:                              (25) 

Where the distribution function  .  is similar to (13) defined by  it turns out that. Since the sets 

 TS   , scppsT ,,  are of Lebesgue measure zero and mutually disjoint we find that for any 

Borel set R  one has  

     acscppsTS TT ,,,,                                                        (26) 

The sets  ,sS   ppS  ,  scS  , and  acS  singular pure point ,singular continuous and 

absolutely continuous supports of  respectively. We note that  

                 pppp SS  and      S S S     , , ,s sc ac                  (27) 

In general it is not possible to replace inclusion by equalities, let now   . be a measure with 

values in  H  the measure   . admit a Lebesque- Jordan decomposition 

    
ac s pp sc

,, .As above the notation   

              
scpp

sc

s

pps SSSSSS ,,  and     
acac SS   

stand for the singular pure point , singular continuous and absolutely. We get  

      : 0pS                                                                     (28) 
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we have    p ppS S  and      ppp SS  with each operator-valued measure 

  .  we can associate a scalar measure      H  hhh
h

,,.. . In the following  we are 

interested in the problem whether the spectral properties of the operator valued measure   .  

can be characterized by a family  of scalar measures. To this end let  
1

, 1
N

k
h N


     

be a total set in H with we associate the family  ,. 1 
kh

N

k  of scalar measures. Let us introduce 

the following sets. 

   1; k

N

s k s h
S S 
                                                                          (29) 

   1; k

N

pp k pp h
S S 
                                                                       (30) 

     1;
|

k

N

sc k sc pph
S S S 
                                                          (31) 

     1;
|

k

N

ac k ac sh
S S S 
                                                            (32)   

Lemma (1-2-8) [96]: 

Let H  be a separable Hilbert space and   


NhT
N

kk 1,
1

be a total set in H .Then 

the sets      ; ; ;
, ,s pp scS S S        and  ;acS    are singular ,pure point ,singular 

continuous and absolutely continuous supports  of   .  respectively i.e., 

    
;

, , , ,S s pp sc ac


                                                      (33) 

For any Borel set R . In particular the following relations hold. 

 ;p ppS S     and  

       
;

, , ,p pS S S s sc ac                                                    (34) 

Proof: 

By the Lebesgue-Jordan decomposition one easily gets that for each Hh  We have 

    
,

, , , , ,
h

h h s pp sc ac



                                                        (35) 

For any Borel set R where   Th,
. arises from the Lebesgue-Jordan decomposition of the 

scalar measure  h
. . Let s  . Since mes  ;

0sS    

We get  

                   
,; ; ;

,
k k s

s k k s sh h
S h h S S                      (36) 

For any kh   using (35),(36) and  

     
, ,; ;k s k s k

s s sh h h
S S S                                                                              
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, ,;k s k s

sh h
S                                    (37) 

We find      
;

, ,
s

s k k k kS h h h h  
 

   
 

    for any kh  . Since  is total we finally 

obtain     
;

s

sS      for any Borel set   . Similarly we prove the statements 

for .,, acscppT   

Let 
;ppx S   . Then there is kh  such that  

khppSx . Hence  

       0,   kkh
hhxx

k

 which yields    0 x  or   pSx , i.e.    
;pp pS S    

conversely if   pSx  then there is a Hh such that    0h
x . If this is not the case then 

for each Thk  one has        0,   kkh
hhxx . Since T is total this yields 

       0,  hkk xhhx  

For each Hh  Contrary to the assumption. however, if there is a Thk  such that `    0
kh

x  

then    
; ;

, , .pp p ppx S i e S S       hence  
;p ppS S    . Further from (33) we get              

   ;
, , , ,T TS S s pp sc ac     

Taking (27) into account we get     , , , ,
k k

T h h
S S s sc ac sc     for each kh  . Since 

     SS
kh

 for each Thk   we get  ;TS    which immediately proves (34). Taking 

(20) and (21) into account we obtain that 01C  which leads to the representation. 

                        0 2
,

1

t
M z C d t z

t

 
    

 


1
t-z

                                   (38) 

Lemma (1-2-9) [96]:  

          Let A be a simple densely defined closed symmetric operator on the a separable Hilbert 

space with     AnAn   . Further, let  0 1, ,   H be a boundary triple of *A  with Weyl 

function   . . If  .
0AE  is the spectral measure of   AExtAA  0

*

0 ker  and   .  that of the 

integral representation (38) of the Weyl function   . . Then the measure  .
0AE  and   .  are 

equivalent. In particular one has    0A     . 

Theorem (1-2-10) [96]: 

Let A be a simple densely defined closed symmetric operator on a separable Hilbert 

space h with    AnAn   . Further let  0 1, ,   H be a boundary triple of *A with Weyl 

function  .M . 
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If  .
0AE is the spectral measure of  AExtAA  0

*

0 ker and   . that of the integral 

representation (38) of the Weyl function  .M , then for each total set  

 
1

, 1
N

k k
h N


     in H  the sets      ; ; ;

, ,s pp scS S S        and  ;acS   . 

Singular pure point, singular continuous, and absolutely continuous supports of  .
0AE  

respectively, i.e. we have  

    
0 0;

T

A T AE S E                                                                       (39) 

For each Borel set R . In particular the relations  0 ;p ppA S    and                                                      

                       0 0;
, , ,A S A s sc ac       hold. 

Proof: 

Since by lemma (1-2-8) the sets  ; , , , ,TS s pp sc ac    are supports of   . , one 

immediately gets from lemma (1-2-9) that the same sets are supports of  .
0AE of the same type, 

i.e., (39) holds . If  ;ppx S    then there is at least one Nk ,...,2,1 such that  

       
0

, 0A k kE x i h i h    

Hence  0Ax p  conversely, if  0Ax p  then due to the fact that  i   is  

Generating for  .
0AE  then is at least one Nk ,....,2,1  such that                                          

       
0

, 0A k kE x i h i h    

Hence 
;ppx S    which proves    0 ;p ppA S    the relations    0 ;s A S     

 0 , , ,A s sc ac    are consequences of lemma (1-2-8) and lemma (1-2-9) .we characterize the 

spectral properties of the operator-valued measure   .  using the boundary behavior of the 

Weyl-function  .M . A first step is to develop a corresponding theory for scalar measure 

which satisfies 

 


R
21 t

td
                                                                                          (40) 

Let us associate with     the Poisson integral  

  zV
 

 
2 2

,
yd t

z x iy
t x y


  

 

R

                                                       (41)    

Which defines a positive harmonic function in  . Conversely it is well known that each 

positive harmonic function  zV1  in   admits the representation    zVayzV 1  with 0a  

and  zV  of the form (40) and (41). Below we summarize some well-known facts on positive 

harmonic function  

Proposition (1-2-11) [96]: 
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Let   be a positive Radan measure obeying (40) and let  zV be a positive harmonic 

function in z x iy    defined by (41). Then one has. 

(i) for any x the    lim limV x io V x iy    exists and is finite , if and only if 

symmetric derivative  xD  

 
   

0
lim

2

x x
D x



   



  
                                                        (42) 

           Exists and is finite. In this case one has  

                                             V x io D x                                            (43) 

(ii) if the symmetric derivative  xD  exists and is infinite the                zV as

xz   

(iii) for each Rx one has       xzVxzSm   as xz      

(iv)  zV  converges to a finite constant as  xz  , if and only if the derivative 

 d t dt exists at xt   and is finite.  

The symbol   means that the limit  
0

lim ,i

r
V x re x


 R  exists uniformly in  ,      

for each  0, / 2  . Proposition (1-2-11) allows us to introduce measures satisfying (40) the 

following sets  z x iy     

    sS x   :V z  as xz                                                      (44)      

     lim 0ppS x V z


   :
z x

Sm z - x                                                     (45) 

        0scS x and z x V z as z x      :V z                      (46) 

      0 0scS x exists and V x i      :V x i0                              (47) 

Obviously the sets  sS  and  acS  as well as   ,ppS   scS  , and  acS  are mutually disjoint. 

By proposition (1-2-15) one immediately gets that           pppp SS   and 

     S S S                                                                                 (48) 

Indeed the relation     pppp SS  is a consequence of (iii).By (ii) we get  

    ss SS   

Similarly we prove     scsc SS   using (ii) and(iii).Finally the relation     acac SS   

follows from (i). We note that it can happen that   0 scS  and the inclusion     scsc SS   is 

strict even if 0sc . Furthermore we note that from (26) and the inclusion 

    , , , ,T TS S s pp sc ac      we find that  

                                      S x                                                          (49) 

For any Borel set   . Now we are going to characterize the spectral parts of the extension 

0A  by means of boundary values of the Weyl function  .M . 
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Using the integral representation (38) of the Weyl function we easily get that  

 
 

    2 2
, ,h hV z Sm M z z h

y
   


 H

y

x-t
h

d t                      (50) 

Where     , , ,hM z M z h h z h  H                                                          (51) 

The function  .hM is a scalar R-function. Since  .hM arises from the Weyl function we call it 

the associated scalar Weyl function  .hV  is  imaginary 

part of the associated scalar Weyl function  .hM  and the theory developed we can relate the 

boundary behavior at the real axis the imaginary part of associated scalar Weyl functions with 

the spectral properties of the self-adjoint extension 0A . To this end in addition to (29) and (32) 

we introduce. 

   1; k

N

s k s h
S S 
                                                                          (52) 

   1; k

N

pp k pp h
S S 
                                                                        (53) 

     1;
\

k

N

sc k sc pph
S S S 
                                                             (54) 

     1;
\

k

N

ac k ac sh
S S S 
                                                             (55) 

By definition the sets  ;sS    are disjoint. They holds for  ;ppS   . Furthermore we denote 

that the sets  ;TS    have Lebesgue zero, i.e., mes 

 ;
0 , , , .TS s pp sc    , it turns out that the sets  in theorem (1-2-14) can be replaced 

by the sets  ;TS    

Theorem (1-2-12) [96]: 

Let A be a simple densely defined closed symmetric operator on a separable Hilbert 

space H with    AnAn   . Further, let  0 1,   H,   be a boundary triple of *A with Weyl 

function  .M . If  .
0AE  is the spectral measure of  AExtAA  0

*

0 ker  and total set 

  


NhT
N

kk 1,
1

 in H  the sets  ;sS   ,    ; ;
,pp scS S     and  ;asS    are 

singular ,pure point , singular continuous and absolutely continuous supports of  .
0AE  

respectively , i.e.,  we have                

    
0 0;

, , , ,A AE S E s pp sc ac

                                                  (56) 

For each Borel set   . In particular  it hold    0 ;p ppA S    and  

                                          0 0;
, , ,A S A s sc ac       . 

Proposition (1-2-13) [96]: 

 ;TS  
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Let  .  be a scalar R-function. Then for almost all x the limit   0ix lim
0y 

 0ix  exists and moreover in this case one has    lim
z x

x io z 


  .  

Theorem (1-2-14) [96]: 

Let A be a simple densely defined closed symmetric operator on a separable Hilbert 

space h with    AnAn   Further let  0 1,   H be a boundary triple of *A with Weyl 

function  .M and let  0
0AE  be the spectral  measure of the self- adjoint extension  *A of A  . If

 
1

N

k k
h


  ,  N1  is a total set in H  then  sets  ;s M  ,  ;pp M  ,  ;sc M   and 

 ;ac M   are  supports  of  .
0AE  respectively. i.e., we have  

    
0 0

; , , , , .A AE M E s pp sc ac

                                               (57) 

For each Borel set R In particular it holds    0 ;p ppA M    and  

     0 0;A M A        for , ,s sc ac  . We note that the inclusions  

   0 ;s sA M       and      0 ;sc scA M    of theorem (1-2-14) may be strict even if 

 0Asc  is empty. 

Let  .   be a Borel measure on R and let    be a Borel set the set   

     0acCL x x x x x         :mes - ,                 (58)                            is 

called the absolutely continuous closure of set x  obviously the set   xxCLac   is always closed 

and one has   

Lemma (1-2-15) [96]: 

Let  .  be a scalar R-function which has the representation (10) then      acacac CLS    

Proof:  

If    acacCLx   then there is an 0  such that    , acmes x x             

     , , 0ac ac acx x x x                                                    (59) 

Hence     acac SSx   which yields      acacac CLS   conversely if      acSx  then 

there is an 0  such that    , 0acx x       then  , 0ac x x      using                     

 ,x xac        
 

   ,
, 0

ac
ac ac

x x

d t
x x dt

dt  


   

  
               (60) 

 and proposition (1-2-11) (i) and (vi) one gets  

            ,ac x x    
      

1
0 0, Sm i dx x ac

    
             (61) 

Hence    00  dtitSm   for    . . , aca e t x x      . However by definition of the set 

 ac  one has   0 0Sm i dt     for all     ac   which implies 

    , 0acmes x x       
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Hence   acacCLx   or equivalent      scacac SCL  . 

Proposition (1-2-16) [96]: 

Let A be a simple densely defined closed symmetric operator a separable Hilbert space 

with    AnAn   . Further let  0 1,   H,  be a boundary triple of *A with Weyl function 

 .M  If  
1

N

k k
h


  ,  N1  is a total set in H  then the absolutely continuous spectrum of 

the self-adjoint extension 0A  of A is given by. 

    
khacac

N

kac MCLA  10                                                                   (62) 

Theorem (1-2-17)[96]: 

Let A  be a simple densely defined closed symmetric operator on a separable Hilbert 

space h  with    AnAn   . Further, let  0 1,   H,  be a boundary triple of *A   with Weyl 

function  .M . 

If  
1

N

k k
h


  ,  N1  is a total set in H , then for the self-adjoint extension  

0A  of A  the following conclusions are valid :  

(i) The self-adjoint extension 0A of A  has no point spectrum within the interval  ba,  . 

i.e.,       baApp ,0  if and only if for each Nk ,...2,1  one has  

                                               0lim
0




iyxyM hk
y

                                              (63) 

for all  bax , . In this case the following relation holds                                                                                                                                    

                   
   

 
   baM

M

baA
baA hkac

N

k

hkac

N

k

c ,
,

, 1

1

0
0 




 




                       (64) 

(ii) The self-adjoint extension 0A  of A  has no singular continuous spectrum within the 

interval         baAeiba ac ,..,, 0  if for each Nk ,...2,1  the set     baMhkac ,

is countable in particular, if     , ac hka b M  is countable.  

(iii) The self-adjoint extension 0A of A  has no absolutely continuous spectrum within the 

interval  ba,  .i.e.,       baAac ,0  if and only if for each Nk ,...2,1  the 

condition 

        00  ixMSm hk                                                                            (65) 

holds for a.e.  bax , . in this case we have                            

       0 , ; ,s sA a b M a b      

Proof: 

(i) If condition (65) is satisfied for all  bax ,  and all Nk ,...2,1 , then a simple 

computation shows that  lim 0hk
z x

z x M


   holds for all  bax ,  and each Nk ,...2,1  

too. Therefore     0,  baM hkpp  for  Nk ,...2,1  whichyields     0,;  baTMpp  

theorem (1-2-14). Implies  0p A    , 0a b    which yields     0,0  baApp .   
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(ii) Conversely if     0,0  baApp then     0,0  baAp  again by theorem (1-2-14) we 

find     0,0  baApp therefore     0,0  baApp  for each Nk ,...2,1 . However this 

implies that    lim 0hk
z x

z x M z


  which yields   0lim
0




iyxyM hk
y

for all  bax ,  

and each Nk ,...2,1 . The first of relation (64) is consequence of 

     000 AUAA cpp    and  0pp A    , 0a b  . The second part of relation (64) is a 

consequence of theorem (1-2-18) which shows that                          

       0 1 0; ; , ,N

kA M M A sc ac                                       (67) 

and      000 AUAA acscc   .Both facts imply that     baAc ,0   

                        baAbaAbaMM chkac

N

khkac

N

k ,,, 0011               (68)  

Which proves (64)  

(ii) By (53) we gets that        hkhkscschkhkac MscSSS   ,
. Therefore if 

   baM hkac ,  is countable, then so is    baS
hkac ,   this yields that the singular 

continuous measure   schh,
.  is supported within the interval  ba,  on a countable set. However 

this implies that   0,
,

 schk
ba  for each Nk ,...,2,1  and every Hh  one has 

 which yields   0, 
sc

ba . Therefore by lemma(1-2-9) one gets   0,
0

baE sc

A  

which proves     0,0  baAsc . If   hkacMba \,  is countable, then by 

     hkachksc MbaM  \,  the set  hksc M   is countable too which completes the proof (ii). 

(iii) If for each Nk ,...,2,1 the condition (65) holds for a.e.  bax ,   each 0   one has 

     , ,ac hkmes x x M a b        hence      0,  baMCL hkacac  taking proposition (1-2-

16) into account we find     0,0  baAac . Conversely if     0,0  baAac  then proposition 

(1-2-16) for each Nk ,...,2,1 we have           0,,  baMCLbaMCL hkacachkacac  

Which verifies condition (65) for a.e  bax , . Using      00 , AbaA s   and  

     0 0;s sA M A      which was proved in theorem (1-2-14) 
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