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Abstract 

In this paper we show that a homogenous operator is unitary and a reducible homogenous weighted 

shift is un weighted bilateral shift, also a projective representation is irreducible, and the quasi-

invariant is equivalent to a unitary representation.  
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INTRODUCTION  

All Hilbert Spaces in this paper are separable Hilbert spaces over the field of complex numbers. 

The set of all unitary operators on a Hilbert space H  will be denoted by 𝒰(𝓗). When equipped 

with any of the usual operator topology 𝒰(𝓗)becomes a topological group. All these topologies 

induce the same Borel structure on  𝒰(𝓗). We shall view 𝒰(𝓗)as a Borel group with this 

structure.  𝑍, 𝑍+, 𝑍−  will denote the set of all integers, non-negative integers and non-positive 

integers respectively, R and C will denote the Real and Complex numbers. D and T will denote 

the open unit disc and the unit circle in C, and �̅�  will denote the closure of D in C , Mob will 

denote the Mobius group of all bi holomorphic automorphisms of D. Recall that Mob = { 

𝜑𝛼, 𝛽 ∈ 𝑇, 𝛽 ∈ 𝐷) } , where :  

𝜑𝛼𝛽(𝑍) =  𝛼 
𝑧−𝛽

1−𝛽𝑧
 , 𝑧 ∈ 𝐷.                                ( 1.1) 

Mob is topologies via the obvious identification with TxD. With this topology, Mob becomes a 

topological group. Abstractly, it is isomorphic to PSL ( 2, R) and to PSU (1.1).  

 

Lemma (1):  

           If T  is a homogenous operator such that kT  is unitary for some positive integer k then T   

is unitary. 

Proof: 

Let  Mobs since  T  is unitary, it follow that   
k

T  is unitary equivalent to kT and 

hence is unitary nI particular taking   we find that the inverse and the adjoin of 

    1
 TIT

k
 are equal    kk

TIIT  


. 

 

Since kT  is unitary implies that        kkkk
TIITTIIT  

 *
 and we get 

    kk
TIIT


 **  and hence ITT *  we have    *

kk

I T I T      *
kk

T I T I    . 

For all D  the two side of this equation is expanding binomially and the binomial rule is 

  rrn
n

r

n
ba

r

n
ba 



 









0

 

By applying this rule we get  

       * *

0 0 0 0

1 1 1 1
k k k k

m n m nm m n n m n m n

m n m n

k k k k
T T T T

m n m n
    

   

        
            

        
    
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 






















k

nm

nmnmnm
TT

n

k

m

k

0,

1   

 






















k

nm

nknknmnm
TT

n

k

m

k

0,

*1   

by equaling the coefficients of powers weight  

nknkmn TTTT  **    for   knm  ,0  

Noting that our hypothesis on T  implies that T  is invertible, we find 
n

mk

mk

m

T

T

T

T
*

* 


  is implies 

nmkknm TT   *   for all nm,  in this range, in particular taking 1 knm  we have *1 TT   

this T  is unitary. 

Theorem (2): 

Up to unitary equivalence, the only reducible homogenous weighted shift (with non-zero 

weights) is the un weighted bilateral shift B 

Proof: 

         Any such operator T  is a bilateral shifts and its weight sequence znWn ,  is periodic say 

with period, we may assume 0nW  for all n in z 

The spectral radius  Tr of T  is given by the following  

 
1

0

...lim 1 1

n

n
j

r Sup j j n j  





 
 

   
 

,    rrTr ,max  where   

 
1

0

...1 1lim
0

n

n

j

Supr j j n j
j

  





 
 

    
 

 

And  

1

...1 2lim
0

0

n

n

Supr j j j n
j

j

  


 
 

    
 
  

 

In our case since the weight sequence n  is periodic with period k this formula for the spectral 

radius reduces to  
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   k
kTr

1

110 ....    

Now assume that T  is also homogenous, then   1Tr . Thus 110 ... k  by the periodicity of the 

weight sequence, it then follows that 1... 11  knnn  Zn   therefore it znxn ,  is the 

orthogonal basis such that n

k

knn xBxTx   for all n and hence kk BT  , since B is unitary show 

that kT  is unitary therefore T  is unitary. Hence nnn xTTx  since 1T implies 1nx  

for all n . Thus BT  .  

Definitions (3):  

If T  is an operator on a Hilbert space H  then a projective representation  of Mobius  on 

H  is said to be associated with T  if the spectrum of T  is contained in D and  

     
*

T T                                                                               (1) 

For all elements   of Mob 

Theorem (4): 

If T  is an irreducible homogenous operator ,then T  has a projective representation of Mob 

associated with it- Further this representation is uniquely determined by T . 

 For any projective representation  of Mobs let #  denote the projective representation of Mobs 

obtained by composing with the automorphism * of Mobs so  

       # *                                                                                       (2) 

We note.   

Proposition (5): 

If the projective representation   associated with a homogenous operator T  then #  is 

associated with the adjoin *T ofT .  Further T  is invertible then #  is associated with 1T  also it 

is follows that T  and 1*T have the same associated representation .  
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Theorem (6):  

Let H  be a Hilbert space of function on   such that the operator T  on H  giver by

    xxfxTf  , x , Hf  is bounded. Suppose these are a multiplier representation of Mob 

on H  . Then T  is homogenous and   is associated withT . 

Definition (7):  

 Let T  be a bounded operator on a Hilbert space H then T is called a block shift is there is 

an orthogonal decomposition nInH   of H in to non-trivial subspace Inn ,     such that 

  1 nnT   the following is due to Mark Ordower.  

Lemma (8):  

         If T  is an irreducible block shift then the blocks of T are uniquely determined byT . 

Proof: 

Fix an element T of infinite order and let nV , In  be blocks of T  then define a unitary 

1S operator S  by xSx n   for nVx , In . Notice that by our assumption on the eigen value 

Inn , of S  are distinct and the blocks nV of T are precisely the eigen spaces ofS . If Jnn ,  

are also blocks of  T  then define of other unitary 1S  replacing the blocks nV  the blocks n by the 

blocks the definition ofS . 

A simple computation shows that we have 
*

11

* TSSSTS  hence SS *

1    commutes with T  

since SS *

1 is unitary and T  is irreducible and SS *

1  is a scalar. That is SS 1  for T  therefore 

S  has same eigen spaces as S  thus the blocks of T  are uniquely determined as eigen spaces of 

S . 

To define the projective representation and multipliers, let G to be a locally compact second 

countable to topological group then a measurable function. 

π:  G u H  

Is called a projective representation of G  on the Hilbert space H  if there is function 

TGGm :  such that 
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 1 1  ,     m 1 2 1 2g g g g    1  2g g                                                     (3)    

Forall   1 2g ,g G . Two projective representation  , 2   in the Hilbert  spaces 1H  , 2H will be 

called the equivalent if there is exists a unitary operator      21 HH :u , and function : G T  . 

Such that      2 1U  g g g . For all   Gg we shall identify two projective representation they 

are equivalent. 

Recall that a projective representation of G is called irreducible if the unitary operator 

  g , Gg have no common non-trivial reducing subspace. Clearly TGGm :  is a Borel 

map. In view of equation (3) m satisfies    gg ,111, mm   

       m m m m1 2 1 2 3 1 2 3 2 3g g g ,g ,g g ,g ,g g ,g                                              (4) 

Proof equation (4) : 

From equation (6)        m  1 2 1 2 1 2g ,g g ,g g g which implies that  

       m   1 2 1 2 1 2g ,g g ,g g g  

Then 

       / 1m    g,1 g g 1  

       / 1m    1,g g 1 g  

And 

       /m   1 2 3 1 2 3 1 2 3g ,g ,g g ,g ,g g ,g g  the left hand side of equation. (4) 

   
 

   

 

   

 

    
.m m

  

     
 

1 2 1 2 3 1 2 3

1 2 1 2 3

1 2 1 2 3 1 2 3

g g g g g g g g
g ,g g ,g ,g

g g g g g g g g
 

And the right hand side  

   
 

   

 

   

 

     
.m m

  

      
 

1 2 3 2 3 1 2 3

1 2 3 2 3

1 2 3 2 3 1 2 3

g g g g g g g g
g ,g g g ,g

g g g g g g g g
 

       m m  1 2 1 2 3 1 2 3 2 3g ,g g g ,g g ,g g g ,g  
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For all group of elements 321 g,g,gg,  any Borel function m into T  satisfying (4) is called a 

multiplier in the group.     

Definition (9):  

Two multipliers m and on the group G are called equivalent I there is Borel function 

: G T   such that          m m  1 2 1 2 1 2 1 2g ,g g g ,g g g g ,g  for all G21 g,g and clearly 

equivalent projective reorientation have multipliers, the multipliers equivalent to the trivial 

multiplier are called exact. The exact multipliers form a subgroup of the multiplier group, the 

quotient is called the second co homology group  TGH ,2
 we shall need .  

Theorem (10): 

Let G  be a connected semi-simple lie group then every projective representation of G  is a 

direct. Integral of irreducible projective representation of  G . 

Proof: 

Let   be a projective representation of G  let G  be the universal cover of G  and let 

GGP :  be the covering homomorphism. Define projective representation 0  of  G  by 

   0 x x   where  xPx ~  a trivial computation of  G  and its multiplier 0m  is given by 

   yxmyxm ,~,~
0   where    ,x P x  y P y . 

However since G  is a connected Lie group  TGH ,
~2

 is trivial therefore 0m  is exact that is a 

Borel function  

: G T   

Such that  

         0, , /m x y m x y x y xy                                                    (5) 

For all Gyx
~~~  , and    yPyxPx ~,~   

Now we define the ordinary representation   of G
~

 by      0x x x    for Gx
~~  the ordinary 

representation t
~  of      : ,tG x Pi x dp t



   Gx
~~  replacing   its definition in term of  ,  

http://www.iprjb.org/
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we get that for each Gx ,  x     
1

tx dp t 




  for any x~  such that  xPx ~ . So we would 

like to define  :t G u  H  by      
1

t tx x x  


  for any  as above and verity that t       thus 

defined is an irreducible projective representation of G  with multiplier m. But first we must show 

that t  is well defined, that is if yx ~,~  are elements of mapping in the same element x   of G   under 

P the we need to show  

       
1 1

t t
x x y y   

 
                                                            (6) 

Let Z
~

 be the kernel of the covering map P . Since Z
~

 is a discrete normal subgroup of the 

connected topological group ZG
~

,
~

 is a central subgroup of G
~

. Since for each tt ~,  is irreducible it 

follows that there is a Borel function [44]. :t Z T  . Such that    tZ Z I   for all Zz
~~  we 

have      0Z Z Z Z       1Z Z I     for all Zz
~~ .  

Therefore evaluating  z  using its t  all in a set of full P  measure and all Zz
~~ . Replacing 

the domain of integration by this subset if need be we may assume that  for allt . Thus  

   z z I                                                                                                 (7)  

for all Zz
~~ and for all t . Also for Gx

~~  and Zz
~~  we have  

         / , ,1 1x r Z r xZ m x Z m x     

 where  xPx ~  and hence  

     xZ x Z   (8) 

Now we come back to proof equation (6)  

Since    yPxP ~~  , there is Zz
~~  such that Zxy

~~~  using equation (6) we get    

 

 

 

t 
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           
11 1

t t ty y x Z x Z     


  from equation (8) we have    
1

ty y  

   
1

tx x 


 this proves equation (6) and hence t  shows is well defined. Now for    

     , t tx y G xy xy xy     

We apply                    t t txy x y    

We get                          t t txy xy x y     

We use                         
1

t tx x x  


  

And      
1

t tx y x  


  

This implies                  
1

/t tx x x  


  

     
1

/t ty y y  


  

by applying eq. (8) we get   

                                           

form eq. (8) we get   

   

 
         0 ,t t t t

x y
x y m x y x y

xy

 
   


  

Since    yxmyxm ,~,~
0   then        ,t t txy m x y x y    where Gyx

~~,~   are such that 

   yPyxPx ~,~   this shows that t is indeed projective 

Representation of G  will multiplier m . Since from the definition of t  it is clear that t  and t  

have the same invariant subspaces and since the latter is irreducible it follows that each t  is 

irreducible. Thus we have the required decomposition of   as a direct integral of irreducible 

projective representation t  with the same multiplier as  : tdp t  


  . As a consequence of 

theorem (1-10) we have the following corollary, here as above G
~

 in the universal cover of  

   
 

 

 

 

       

   

   

 
   

1 1
.

t t t t

t t t

xy xy y r y x y x r y
xy xy x y

x y xyx y

     
   

   
 

  
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GGPG 
~

:,  is the covering map. Fix a Borel section GGS
~

:   for P  such that   11 S . 

Notice that the kernel Z
~

 of P  is naturally identified with the fundamental a group  G1  of G . 

Define the map . 

ZGG
~

:   by        
1 1

, , ,x y S xy S y S x x y G
 

                   (9)    

For any character (i.e., continuous homomorphism into the circle group T ) of  1 G define 

TGGmx :      Gyxyxxyxmx  ,,,,  . Since Z
~

 is a central subgroup of G
~

 it is easy 

to verity that   satisfies the multiplier identity .  

Hence xm  is a multiplier onG for each character x  of Z
~

. 

 

 

 

Corollary (11):  

Let G  be a connected semi-simple Lie group, then the multiplier xm  are mutually in 

equivalent and every multiplier on G  is equivalent to xm  for a unique characteristic x . In other 

words  xmx   defines a group isomorphism    TGHomHTGH ,,,2  .  

for MÓb ,   is non-vanishing analytic on D . Hence there is an analytic branch of log 
1  on

D  Fix such a branch for each    such that 

(a) For ,1  log 0  

(b) The map    zz   log,  from DMÓb  into  is  a Borel function with such a 

determination of the logarithm we define the function   2

N

   and 0N  and arg  on Dby

   







 z

NN

 log
2

exp2 , and    zz   logImarg  for zn  let TTfn : defined by

  n

n Zzf  in the following all the Hilbert space H  is spanned by orthogonal of set  Infn : . 

Where is some subset of  Z  thus the Hilbert space of functions is specified by the set I and 
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 Inf n ,   for MÓb  and complex parameters N  and   define the operator  1R on H  

by 

            MÓb,2
11   



 H,fTzzfzZZfR
N

 

We obtain a complete result of the irreducible projective representations of Mob is follows 

that , Holomorphic discrete series representations


D  here 
 ZI,0,0   and 

   
 








n

n
fn

12
 if 0n we get 0

2
nf  for 0n  for each f  in the representation space 

there is an f
~

 analytic in D  such that f  is the non-tangential bounding value of f
~

, by the 

identification the  representation space may be identified with the function Hilbert space    NH  

of analytic functions on Dwith reproducing kernel  

  N
w


 21 , Dwz , .  

Principal series representation sC ,11,    purely imaginary . The equation  

 

  

   
 

   
 nn

nn

n

n
fn















12
Where 1  so 1

2
nf , here 

1
, ,

2
s


  


  

, 1nI Z f   for all n  and the complementary series representation 

   1
2

1
0,11,,C , here ZI 








 ,

2
1

2

1
, 


  and 

Zn

k

k

f
n

k
n 







,

2

1

2

2

1

2
1

0

2







  

Where one takes the upper or lower sign according as n is positive or negative.        

Theorem (12):  

 (i)  m Is a multiplier of Mobs for each T  up to equivalent m , T  are all the multipliers 

in other words, 2H (Mob) is naturally  isomorphic to T  via the map  m . 

http://www.iprjb.org/


Journal of Statistics and Actuarial 

Research   

ISSN 2518-881X                                                               

Vol 6, Issue 1, No.1, pp 1- 19, 2022                         

                                                                                                             www.iprjb.org 

 

12 

 

 

(ii)  For each of the representations of Mob result above. 

The associated multiplier is m where Niee    in each case except for the auti-holomorphic 

discrete series, from the definition of  ,R one calculates that the associated multiplier m is given 

by  

 
   

     

2

2 1
1 1

1 2

22
1 1 1

, ,

z

m z T

z z





 

 

  

 

 
 
  

 
  

 

 

For any two elements 21 ,  of Mob to show this we have  

  11  From equation (3)        222 ggg,gg,g 111  m  by applying equation (3) if  ,R  

then         1

2

1

1

1

2

1

1

1

2

1

1 ,,,    mzf  implies that 

    
   1

2

1

1

1

2

1

11

2

1

1
,

,
,




 






zf
m  

Substituted 

 ,R ,  
  
   1

2

1

1,

1

2

1

1,1

2

1

1
,

,
,





 









R

zfR
m  

But since                    

         1
2

,R f z z z f z




         

 Implies             

 
          1 1

2 2
1 2 1 2 2 21 1

1 2 1 1

, 1 , 2

z z z f z
m

R R

  

   

    
 

 

 

 

 
  

         

   

1 1
2 2

1 2 1 2 2 2

1 1

, 1 2

z z z f z

R f z

  

 

    

 
  

Then   
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 
        

          

   

     

2 2 2
1 2 1 2 2 1 1 21 1

1 2

1 12 22 2
1 2 1 1 2 2 1 1 2 1

z z z f z z
m

z z z f z z z

  

  

     
 

        

 




 

 

 

       Notice that the right hand side of this equation is an analytic function of z in D  and it is of 

constant modulus1 in view of the chain rule for differentiation therefore by the maximum modulus 

principle, this formula is independent of   z for Dinz . Hence we may take z = 0 in this formula 

and thus mm   with Nie    so m is the multiplier associated with #  is m   since 
# NDD  it 

follows that if  D  is the anti-holomorphic discrete series, then multiplier is m  where

Niee   . The multiplier m , Tw  are naturally bioequivalent (since  mw  ) is clearly a 

group homomorphism from T  onto  TMÓb,2H  this amounts to verifying that m  is never exact 

for 1w  this fact may be deduced from corollary (1-11) as follows. Identify Mob with 

   ,, viaDT   the group low on DT   is given by 

   2 1 2 1 2 2
1 1 2 2 1 2

2 1 2 2 1 2

1
, , . ,

1

     
     

     

  
  

  
, the identity in DT    is  (1,0) and inverse map 

is     
1

,  then the universal cover is naturally identified with DR  taking covering 

map. DTDR   to be      ,, 2 itetP  , the group low on  DR  is determined by the 

requirement that P  be a group homomorphism as follows 

    
2

2

2

2 1 2

1 1 2 2 1 2 1 2 2

1 2

1
, , log` 1

it

it

it

e
t t t t Im e h

e






 
   

  

 
   


 

To shows this we have  

Let 12

1

it
e

  ,  22

2

it
e

  . Substitute 1  and 2  in the following equation  

   

















212

221

212

212
212211 ,

1

1
.,,








  

We get          
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  

























21

2

2

2

1

21

2

2122

2211
2

2

2

22

21 ,
1

1
..,




















it

it

it

itit

e

e

e

e
ee

it

 

















































 














21
2

2
2

2
2

1,

1

21
2

2
1

21
2

2
1.21

2















it
e

it
eit

e
it

e
tti

e  

 

































 














 














21
2

2
2

2
2

1,
21

2
2

1
21

2
2

1.21
2















it
e

it
eit

e
it

e
tti

e  

,

21
2

2
2

2
2

1,

2

21
2

2
1.21

2







































 





















it
e

it
eit

e
tti

e  

and this gives                                                      

  























21
2

2
2

2
2

1,
21

2
2

1logIm
1

212
,

22
,

1















it
e

it
eit

eTTtt  

Where (log) denote the principle branch of the logarithm on right halt plane.  

The identity in DR  is (0,0) and the inverse map is    itett  21
, 


 and the kernel Z

~
 

of the covering map P  is identified with additive group Z  via  0,nn    so we choose a Borel 

branch of the argument function satisfying     TzZZ  ,argarg  we make   an explicit choice of 

the Borel function     zz   arg,  as follows      zz    1logIm2argarg ,  let’s also 

choose function DRDTs :  as follows     


,,
2
1S  and easy computation shows 

that for these choices we have      1 1

1 2 2 1S S S      1 2n   for 21 ,  in Mob. Hence we get 

that for mmTw w  , where w      is the character n  maps to nw of Z . Thus the map

 wmw  is but a special case of the isomorphism  m of corollary (1-11) to show the simple 
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representation of the Moby’s group let k  be the maximal compact subgroup of Mob given by 

 T :0,  of course k  is isomorphic to the circle group T  via 0, via . 

Definition (13):  

Let   be a projective representation of Mob and we shall say   is normalized if k/  is an 

ordinary representation of k .  

Lemma (14): 

Any projective representation of Mob then k/  is projective representation of k say with 

multiplier m. But  kH 2
 so there exists a Borel function  such that

 
   
 

kyx
xyf

yfxf
yxm  ,,, . Extend f  to a Borel function TMÓb: g . Define   by 

     xxgx   , MÓbx  then   is normalized and equivalent to   for Zn , let n  be the 

character of  T  given by   n

n xx  , Tx  for any normalized projective representation   of 

Mob  and Zn  let     1: ,n nV v x v x v x T      H  then nzn VH . The subspace 

 nV  are usually called the k -isotopic subspaces of H  put    nn Vd dim  and 

    0:   ndZnT . 

Theorem (15):  

If T  is an irreducible homogenous operator the  T  is a block shift. If   is a normalized 

representation associated withT then the blocks of T  are precisely the k –isotopic subspaces. 

    TnVn , . 

Proof: 

If T  is an irreducible block shift then the blocks of T  are uniquely determined byT . Then  

     1 nn VVT For  Tn                           (10) 

Indeed since T  is irreducible then equation (10) how that   is connected and  Tb  then (10) 

would imply that  nbn V  is a non-trivial. Since is also unbounded by theorem (3-1-21) it 

Tkf :
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 follows that be re-indexing, the index can be taken to be either all integer or the non-positive 

integers, therefore T  is a block shift. So it only remains to prove (10). To do this, fix  Tn      

and   nv
 
 for kx  we have     vxvx n  . Consequently  

    TvxTvx
*1   

      vxxTx  1*1   

      * 11 nNx T T x v x Tv
     

So  .1  nVTv , this proves (10). 

Lemma (16):  

    Let T is any homogenous weighted shift, let be the projective representation of associated 

withT . Then up to equivalent   is one of the representations further:  

(a) If T  is a forward shift then the associated representation is holomorphic discrete series. 

(b) If T  is a back word shift then the associated representation is auti-holomorphic discrete 

series. 

(c) If T  is a bilateral shift then the associated representation is either principle series or 

complementary series. 

Theorem (17):  

Up to unitary equivalence the only homogenous weighted shifts are the ones.  

Proof:  

Let T  be homogenous weighted shift. If T  is reducible we are done by theorem (1-2). So 

assume T  is irreducible then by theorem (1-4) there is a projective, representation of Mob 

associated withT . By lemma (1-3)   is one of the representation. Further replacing T  by *T  if 

necessary, we may assume that T is either a foreword or bi-lateral shift.  

According is either a homomorphic discrete series representation or a principal 

complementary series representation. Hence  ,R  for some parameters   recall that the 

representation space H  is the closed span  of the function Infn ,  where   InZzf n

n  ,   
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and ZI  in the former case and ZI   in the letter case the element’s Infn ,    form 

a complete orthogonal set of vectors in H  , but these vectors are not unit vectors . Their norms 

are as given before .Since T  is a weighted shift with respect to the orthogonal basis of obtained 

H  by normalizing sf n  where are scalar Inan  ,0  such that  

InanfTf nn   ,1  

Notice that since the sf n  are not normalized the numbers an are not the weights of the 

weighted shiftT . These weights are given by follows there the adjoin *T acts by 

Inffaw nn   ,/1  

Its follows that the ad joint act by Infan
f

f
fT n

n

n

n  



,1 12

1

2

*
 where one puts 01 a  in case 

 ZI  let M be multiplication operator on H  define by InfMf nn   ,1 . 

Notice that for each representation is corresponding operator M . Also in case M is 

invertible 
1*M is also exist. Let B be a fixed but arbitrary element of  D and let     ,1  

Mob.  Notice that   is an involution and this simplifies the following computation of    a 

little bit indeed a straight foreword calculation shows that for  ,R we have 

   
 

  10,,1,
2

 




 rrnmCfBCff k

nmk

kn

mnn

nmB                  (11)           where we 

have put 
2

r ,   m

N

C  2
1 0  and   







 














k

m

nk

mN
nmCk






,  since   is associated 

with T  from the following equation (4) we have      TITIT     we analysis the 

two sides of the above equation we get 

        TTTT     

Implies 

       TTTT     and        TTTTTT     
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where nm,   fix in I, we evaluate each side of the above equation at  and take the inner product of 

the resulting  vectors with   we have for the instance 

    nmnm fTTffTfT *,,      112

1

2

1 , 



 nm

n

nm ff
f

f
aa

n

  

and similarly for the other three terms . Now substituting from equation (11) 

we get      
 

k

nmk

kn

mnn

nm rnmCfBCff 




 
2

2

11 1,11, , by applying equation 

(11) in the main equation we have 

     
 

k

nmk

kn

mnn

n

n

nmnm rnmChBC
f

f
aafTTf 









 
2

2

12

1

2

1

* 1,11,  

by comparing with the equation (11) we get  

   
 

 






k

nmk

kn

nmn

nm rnmCfBCaa
2

2

1 1,11  

   
 

2

2

1 ,
n n m k

n k

k m n

C B f C m n r

  

   

where 10  r ,  

 
 

 
 




 
22

1 ,1,1
nmk

k

k

k

nmk

knm rnmCrnmCaa  

We canceling the common factor   mn

n

n
BfC 


21

1   we have the following identity in the 

indeterminate r  which obtained from the above 

 
 

 
 




 
22

1 ,11,
nmk

k

km

k

nmk

kn rnmCarnmCa                                     (12) 

Taking nm   in equation (12) and equating the coefficients of  r  we obtain 

    11 1  nn anan  In (13) 
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