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Abstract

We prove that an operator measure in general is non-orthogonal and unbounded and two

orthogonal spectral measures are unitarily equivalent. In accordance with the stieltjes inversion

formula the spectral measure admits an analytic continuation .We discuss and prove a sharp

estimate that a strictly monotone function on each component interval of the inverse function is

analytic and also strictly monotone with Weyl functions.
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INTRODUTION
Let S be a densely defined symmetric operator in Hilbert space # with deficiency indices

n,(S)=n_(S)<oo . We recall that abounded open interval J =(e, B) is called a gap for S if
[28 - (. 8)|= (e~ B)If |, edomss, (1)

if 2 — —oo0, then (1) turns into (Sf ,f )> B|f ||2 forall f edom S , meaning that (-, /), isa

gap for A if S is semi bounded below with the lower bound 2.

Theorem (1):

Let {Sk }f:l be a family of closed symmetric operators S, , defined in the separable Hilbert space
R such that the operators S, are unitarily equivalent to a closed symmetric operator A in h with

equal positive deficiency indices. If there exists a boundary triple IT, :{%,Fg,rf}for A" such
that the corresponding Weyl function M (.) is monotone with respect to open set J = p(A,),
A=A ‘ker(l“g), then for any auxiliary self-adjoint operator R in some separable Hilbert space

R the closed symmetric operator S admits a self-adjoin extension S such that the spectral, parts
S, and R, are unitarily equivalenti.e. S, =R, [95.109,110].

The following result is known as a generalized Nuimark dilation theorem.

Proposition (2):

If > (.):B(R)—>[#] is a bounded operator measure, then there exist a Hilbert space k abounded

operator k € [#, K] and an orthogonal measure

E ()=B(R)—[k] (an orthogonal dilation) such that

D> (6)=kE(5)k,5€B(R) )
If the orthogonal dilation is minima i.e.,
span{E(5)ran(k):5eB(R)} =K , 3)
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then it is uniquely determined up to unitary equivalence that is if one has two bounded operator

k e[#,k] and K'e[#,K] as well as two minimal orthogonal dilation E(.)=B(R)—[K] and
E'(.):B(R)—>[K'] obeying > (5)=K'E(5)K =K"E'(5)K',6 €(R)B(R), then there exists
an isometry v:K'— K such that E'(5)=v E (6)v,6 B (R).

Definition (3):
We call E (.) satisfying (2) and (3) the minimal orthogonal measure associated to »_(.) , or the

minimal orthogonal dilation of »_(.).

Every operator measure Z() admits the Lebesque Jordan decomposition

Z=i+i i :i +§: where i i i and i are the absolutely continuous,

singular, singular continuous and pure point components (measure) of Z() respectively. Non-
topological supports of mutually disjoint, therefore if an operator measure z is orthogonal,
> (.)=E; (.), then the ortho-projections p* = E; (R)(r e {ac, sc, pp}) are pair wise orthogonal.

Every subspace h = p’h reduces the operator T =T * and the Lebesgue-Jordan decomposition
yields

h=h*®h* ®h™

4
T=T*@T<@T™

WhereT* =P°T Thi, T e{ac,sc, pp}. Now we show Nevanlinna functions:

Let % be a separable Hilbert space, we recall that an operator-valued function F:c, —>[%’] IS
said to be a Neranlinna (or Herglotz or R, ) one if it is holomerphic and takes values in the set of

dissipative operators on # i.e.,

§m(F(z)):WZO,ZeC+
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Usually one considers a continuation of F in [ by setting F(z ): F(z_),z eC_. Bounded

operator k €[#, K] obeying ker (K kerlz ) and Z S)k,5eB(R).By

0
(8)=[(1+t?)d Y (t).5€B, (R) (5)
F 5 F
One defines and operator measure which in general is non-orthogonal and unbounded. It is called

the unbounded spectral measure of F () Using Z the representation [118],
F

F(z)=C +Cz+J'( 1 jdz 2z eC_UC_ (6)

-7 1+t

To show this we have

0
From this representation F (z ) =C,+C,z + Ilﬂz d > (t).z eC,UC_. To prove representation

F

(6) use equation (5)

ZF:( j(1+t)dz ),8 B, (

0 0
s0 dY(6)=(1+t7)d Y (t), which implies that dZ(t):lltde(t), put this in the
F F F + F

representation above we have

14tz 1 i 1+tz
F(z)=C,+Cyz + J:(thjd;(t)‘cﬁcg +£(t -7 )(1+t2)[1+t ) ;

—00

To analysis this component we use this 1tz __A + Bt +% 14tz and

(t-z)(1+t?) t-z 1+t® L+t?

A(L+t?)+Bt(t—z)+C (t-z)=1+tz putt=z weget A(1+2°)=1+2", s0

23
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A=1 at t=0,A-Cz =1 implies that c=0 since A=1c=0. Our equation become

1+t +B, (t -z )+0=1+tz, Bt(t-z)=1+tz -1-t*=-t(t-z), Bt_—t(t Zj B=-1
~z

Substituted A,B,andC the equation

1+z A Bt

= =1+t
(t—z)(1+t2) t—z +1+t2+1+t2 i

We get the following

(7)

F C,+C,
() Tt (t—z 1+t2

zeC,UC.
Which complete the proof. From representation

J~1 1z

F(z)=C,+C.z )zeC,UC.

F determines uniquely the unbounded spectral measure Z() by means of the Stieltjes inversion
F

formula, which is given by

b-6

Z‘((a,b)) s—lims— lim = j Sm(F (x+ig))dx (8)

0—>+0  &e->+0 g1 s
a+

By supp (F) we denote the topological (minimal closed) support of the spectral measure ZF

Since supp (F) is closed the set O =R \supp(F) is open. The Nevanlinna function F (.) admits

an analytic continuation to O, given by

F(4)=Co+Cid+| ( ), A €0,

-A 1+t

24
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Using this representation we immediately find that F () is monotone on each component interval
Aof O e, F(A)<F(u),A<u, A, peA Ingeneral, this relation is not satisfied if 2 and
4 belong to different component interval.

Definition (4):

Let F () be a Nevanlinna function, the Nevanlinna function is monotone with respect to the open
set J <O if for any two component intervals J, and J, of J one has F(4,)<F(4,) for all
Aed,and A, €, or F(4)=F(4,) forall 4 eJ, and 4, €J,.

Let L eN Uco be the number of component interval of J. obviously if F(.) is monotone with

respectto J and L <oo, then there exists an enumeration {J, }t:l of the components of J such

that
F(L)<F(4)<..<F(4)

Holds for {4, 4,,..., 4 } €J,xJ,x..xJ_. If L =00, then it can happen that such an enumeration
does not exist. If F(.) is a scalar Nevanlinna function, then F (.) is monotone with respect to J if
and only J if the condition F(J,)NF (J,)=0 is satisfied for any two component intervals J,
and J, of J .

Definition (5):

A triple H:{%‘,Fo,l“l} consisting of an auxiliary Hilbert space # and linear mappings
T, :dom(A")—#,i=0,1. Called a boundary triple for the adjoint operator A™ of A if the

following two conditions are satisfied:
(i) The second Green's formula takes place

(A'f.9)-(f,A"g)=(Tf ,[,g)—(Tf .[,9).f g edom (A7)

25
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(i) Themapping I' = {T',, I, }: dom(A*) —>#®#, I'f ={I',f ,[f }issubjective the above

definition allows one to describe the set Ext, in the following way.

Proposition (6):

Let Hz{%/,l“o,f‘l} be a boundary triple for A™ then the mapping I' established objective
correspondence A —>0:F(dom (A )) between the set Ext, of self-adjoin linear relations in # .
By proposition (6) the following definition is natural .

Definition (7):

Let I1={#,I;,[',} be a boundary triple for A". We put A, =A, if 9=F(dom (AN\)) that is
A=K

dom(A,)=D, :{f edom (A"):{If I f }ee} 9)

D, ,

If §=G (B) is the graph of an operator B=B" e C(#), then dom (A, ) is determined by
the equation dom (A; ) =D, =ker(I', -BI'y). We set A; =A,
Let us recall the basic facts on Weyl functions.
Definition (8):

Let A be a densely defined closed symmetric operator and I1= {%’,1‘0,1“1} be a boundary triple

*

for A" The unique mapping M()=p(A)—[#] defined by

[f, =M (z)T,f

22

f, eN, =ker(A*—z),z eC,

Is called the Weyl function corresponding to the boundary triple 7.
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Proposition (9):
Let A be asimple closed symmetric operator and let I1= {%’{,FO,Fl} be a boundary triple for A”

with Weyl function M (/1) Suppose that is self-adjoint linear relation in % and A € p(AO) then
() 8(A;)=supp(M)
(i)  nep(A,)ifandonly if 6. p(6—M(1))
(i) red (A,)ifandonlyif Oed (0—M(R))T e {p,c}

We need the following simple proposition.

Proposition (10):
Let A be a closed symmetric operator and let I1= {W,FO,Fl} be a boundary triple for A”

()  If A issimple and TI, ={#,I},I;} is another boundary triple for A” such that
ker(T,) = ker(I'} ) , then the Weyl functions M()) and M, () of TTand IT, , respectively
are related by M, (z)=k'M(z)k+D, zeC,UC. Where D=D"e[#] and
k e[#,,%] is boundedly invertible.

(i) If 6=G(B),B=B"e®% , then the Weyl function Mg(.) corresponding to the
boundary triple T1, :{?H,F(?,Ff} ={#,BI,—TI,,I,} is given by
M, (2)=(B-M(z))",zell, Ul_

Definition (11):

Let A be a densely defined closed symmetric operator and let II :{?H,Fo,l“l} be a boundary triple

for A”. The mapping p(A))>z— 7(z)e[#N,]

y(z):(FO|NZ)_l:?H—> N,,zep(A)

is called the —filed of the boundary triple TT . One can easily have

27
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7(2):(A0_Zo)(p\)_zo)_l7(zo)1zvzoEP(AO) (10)

The y-field and the Weyl function M (.) are related by

* *

M (2)-M (z,) =(z ~Z,)7(20) 7(2)

Lemma (12):
Let A be asimple densely defined closed symmetric operator on a separable Hilbert space

& with equal deficiency indies. Further let IT={%,T,,I",;} be a boundary triple for A" with Weyl
function M (.). If E, (.) is the orthogonal spectral measure of A, defineon 4 and E,, (.) the

associated minimal orthogonal spectral dilation of z; () defined on such that EA0(5):

W 'E,, (6)W forany Borel set 5€B (R).
Proof:
By (10) one obtains
S(M (x+iy)h,h)=y(y(x+iy)h,(x+iy)h)heH (11)

To show this we have

sm(M (z)h,h)= (M (2)h,h)—(M (z)h,h)

2i

Where
Z =X +iy :|h|[(M (2).1)-(M (z),l)}/Zi
=([(2-20)7(20) 7(2)+M (25)~(2-7,) 7(2) -M (z,) | /2

*

Multiply and divided by (z -7,)7(z,)

*
*

_Ih| (2 =20)7(zo) 7(z) (2-Zo)7(24)7(2,)
2i

(z-74)7(z,) (z-74)r(z,)

28


http://www.iprjb.org/

Journal of Statistics and Actuarial

Research
ISSN 2518-881X
Vol 6, Issue 1, No.2, pp 20 - 42, 2022

2 @)@ -2)r(2)~(2-2,)7 (2)]

Where 7*(2,)/i2=y =|aly [#(2).#(2)]=y (7(z)h.7(2)h)

Since z =x +iy , we get

Sm(M (x+iy)h,h)=y(y(x+iy)h,y(x+iy)h)
Which is the prove of (11). Further, it follows from (10) that

7 (ciy ) =1+ (i (y =D)(A—x —iy ) [ (i) (12)
To prove (12) we use (10)
7(2)=(As=2)(A=2) " 7(2,)

7(2):A0(A0_Z)71720_20('6‘0_2)717(20)

(1-28") -2, (A -2) |1 (z,)

(I +n§;zn HAolu ~Z, (A —z)‘lﬂy(zo)
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n+1
AO

:|:| +§:Z n+l
n=1

Since A, =A" is self adjoint spectrum and ‘

{ +Zzn+1 (A-Z) }}/( o)

~Z,(A,-Z )_1}}/(20)

All=1,s0

Hence 7(2)=| 1 +2 (A, =2) "= Z4 (As (A -2 )) |(20)

:[u +(z _zo)(Ao-z)-ljy(zo)

Let x =0,y =1=2z,=0+Ii

Therefore (z ):{I +(z -i)(A, -1 )_l}y(i)

Since z =x +iy

7(x +iy)

1+ (xiy =) (A= (x +iy)) [ (0)
[ (x4 (y =) (A —x =iy ) ] (i)
Which is the proof of (12). Inserting (12) into (11) one gets

sm(M (x-+iy)h,h)= ijﬁd(e%(t)y(i)h,y(i)h),he%

On the other hand we obtain that d (ZM (t)h,h)= (1+t 2)d (EAO (t)y(i)h,»(i)h ) inserting in

the above representation we get

30
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Sm(M (x-+iy)h,h)= E d((Er)(:ih;zh) Chew

Applying the stieltjes inversion formula (8) we find

(Z((a’b”h'h]: [ (1+%)d (E,, (0)7()h.h).h e

M (ab)
Which yields
3 ((@0)=#(1) Ex (@0)r(1) 1)

for any bounded open interval (a,b ) c R . Since A issimple it follows from (12) that

{(A=2)"tan(y(i)): AeC,UC | = 4 (14)

By (13) and (14), E, (.) is a minimal orthogonal dilation of ZEA (.). By proposition (5-1-2) we

find that the spectral measure E, (.) and E,, () are unitarily equivalent.

Definition (13):

Let IT={#,I';,I";} be aboundary triple for A* with corresponding Weyl function M (.). We will

call ZEA (.) the bounded non-orthogonal spectral measure of the extension A, :(A*\ker(l“o)).

Corollary (14):

Let A be asimple densely defined closed symmetric operator in a separable Hilbert space

# with equal deficiency indices. Further, let IT={#,I";,I';} be a boundary triple for A* and

M (.) the corresponding Wey! function, then

5(A0):supp(M):supp(z j,cST(A))zsupp(z; ).Where re{ac,s,sc, pp} .

M

31
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Remark (15):
My () of the form M (z)=(B-M (z))fl =(B—m(z).l,l,)7l is the Weyl function of the

generalized boundary triple T1; . Being a Wyle function. M () admits the representation

t
=C,y+ j(t_z 1+t2}d;(t), zeC, UC (15)

Where »'(.)=>(.) is the (unbounded) non-orthogonal spectral measure of Mg (.). In

B MB

accordance with the Stieltjes inversion formula (8) the spectral measure can be re-obtained by

b-6

> . (ab)=s—lims- lim —— J' (Mg (x+ig)—Mg (x—ig))dx (16)

50 €50 27

With M (z)=M (Z) . We get

+00 +00

Mg (x+ig)—Mg (x—ig)= '[(ﬂ,—m(x+ig))7l—'|‘ (/I—m(x+ig))71dEB(/1) 17)

—00 —00

Where z=x+ig and z~ = x—ig. The representation admits this

+00

Ma (x+i2)~Mg (x=ig) = [ ((2-m(x+ie)) " ~(2-m(x~ie)) " KE, (2)

By taking the integration both sides of equation (16) which leads to the expression

%T:(MB(X+i8)_MB(X_i8))dX
2mbEI:(ﬂ m(x+ie)) " —(2-m(x—ie)) " Jix
F T (mcom et

Put :ibé((/l m(x+|g)) (/I—m(x—ig))fl)dx:kA(/l,é,t)

27“ a+d

32
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We get the following

:Ziﬂib:((MB(x+i5))_l—(MB(x—ig))_l)dx=TkA(ﬂ,d,t)dEB(ﬂ),g>0 (18)
and
Ky (4,6,6) = 2;”((4 m(x+ic))” ~(2-m(x+ie)) ' )dEq (2) (19)

a+o

AeR,A=(a,b)cR and £>0 with m(z)=m(Z),zeC_ we denote by the family of the
component intervals A, =(a,_,b_) of O, =R \Supp(m).

Further the function M (.) admits an analytic continuation to O, such that
1

=Cot J(t X 1+tj (). x<0,

Hence the function m () restricted to O, is analytic. Moreover one easily verifies that for every

component interval A of O
m(x)<m(y),x<y,X, YeA
Therefore for every component interval A of O theset A'=m (A) is gain an open interval.

Thus O, =m(O,,) is also open and the union of the sets O’=m (A) where the union is taken

over all component intervals A of O, .
Lemma (16):

Let m(.) be a scalar Nevalinna function. If A=(a,b) is contained in a component interval A

of O, then C,(5)= Sup |k, (4,5,¢) <, foreach

AeR,e2(0,1]

b-a
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Proof:
we have
m(x+ig)=m(x)-&T,(&,x)+ZeT, (& X), X0, (21)
Where
o1 1
To(g,x)=j Y T d,(y) (22)
and
i 1
Tl(g,X)ZJ.md#(y) (23)

using (21) and (22) we find constant X, (5).k, (&) and w, (&) such that [T, (,x)|< X, (&) and
0<w,(8)<T,(t,x)<x,(5),

X e(a+06,b-5) (24)
For & €[0,1] further we get from (20)

1 1
A-m(x+ig) A-m(x)-ieT,(&,X)
B A—-m(x)—ieT, (&,x)—A+m(x+ig)

(ﬂ,—m(x+ ig))(/i—m(x)—ing(g, x))

P(A,x¢&)=

(25)

From (20) we get

T, (£,x)

P(4xé)= (A=m{xic))(A-m(x)ieT, (2.x))

, AeR,x €0,,,e>0. Since both m(x ) and T,(e,x)

are real for xeO, we have from (20) that |i-m(x+ig)2eT,(¢,x) and

m

[2—m(x)—ieT,|2 £T, (£,x),2 € R. In view of (36) these inequalities yield

34
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To(t.%)

[p(2xe) <] )

,AeR,xe0,,e>0 (26)

Combining (23) with (25) we obtain the estimate

P(ax.e)<2) iR e(arsb-o).ee(0l] (27)

s 1 1
(4d.8)=—— I(z—m(x)—isn(g,x)_/l—m(X)”ng(g'X))dX

a+o
for LeR and & >0. By the representation
1 %7 A-m(x)+ieT,(&,x)—A+m(x)+ieT, (&, ) i
27 2, (A—-m(x)—ieT, (&,%))(A—m(x)+ieT, (&,x))

1 bjﬁ 2i T, (
27 ave (/l m(x) +82T 2)

1

7Z'a+5[(/1m( +€2T 2)

r(4.6,6)=

and the estimate (23) we obtain that T, (,x ) =X, (§) and T, (&,x )’ =w 2 (&) put this in the above

equation we get

dX,ﬂeR,ge(O,l] (28)

Form this equation

e[ [ e mxeo,

The derivationm’(x ),x €O, , admits the representation

35


http://www.iprjb.org/

)IPRJB

INTERNATIONAL PEER REVIEWED
JOURNAL AND BOOK PUBLISHING

Journal of Statistics and Actuarial

Research
ISSN 2518-881X
Vol 6, Issue 1, No.2, pp 20 - 42, 2022
www.iprjb.org

m’(x):To 1

= (1- x)2

Obviously, there exist constants w, (&) and x, (&) such that

dy(t),XeOm (29)

0<w,(8)<m’(x)<x,(5),x e(a+5,b-5) (30)

By combining the equation (27) and equation (29) where 0<w,(5)<m’(x ), x e(a+d,b-5)
we have the following
x,(6) °¢ em’(x)

r(4,6,8)< R RN ))2+g?wf(5)dx' AR, s€(0,1].
Using the substitution y =m (x ) we derive that j—i =m’(x) so dx = m(’j{x) in the equation we
get
PR S () N,
W, (8) 225 (A-m(x)) + & (5) (%)

L %(9) ) £
W, (5) m(ass) (A= y)2 +&W; (6)

dy,AeR,ee (0,1]

Finally, we get

Xy

I’A(ﬂ,é',g)SWle,ﬂ,eR,ge(O,l] (31)
Obviously we have
b-&
kA(ﬂ,,a,g):% (p)(1.6.6) = p(Ad.e)iX +1,(4.5.6), A €R & >0
T

a+d

Hence we find the estimate

b-&
ky(2.6,2) <= [ |o(2.8,2)dx +1,(4.6,2), A €R,& >0
T

a+d
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and the equation r, (4,5,¢) < X1 e arrive at

Taking into account equation |p(4,6,&)<
‘ ( )‘ Wl(§)2 W1VV2

”W)f)(a) (b—a) +L5),/1 e R, & €(0,1]. Which proves (19).

the estimate |k, (4,0,¢)|<
ko (.:0) GG

Since the function O, is strictly monotone on each component interval A, of O, the inverse
function ¢, (.) exists there. The function ¢, (.) is analytic and also strictly monotone, its first

derivative ¢/ () exists, it is analytic and non-negative.

Lemma (17):
Suppose that m (.) is a scalar Nevanlinna function, let A=(a,b) be contained is some component
interval A; of O, =R \supp(m), then (with k, defined as in (18)).
0 AieR\[m(a+5),m(b-0)]
. 1,
limk, (2,6,6)=6_(4.5)= SolAe {m(a+5),m(b-05)} (32)

o (1) Ae(m(a+5),m(b-0))

For 5€(0,(b-a)/2) and

lim limk, (4,6,¢)=6_(1,6)=

£>+0 6>+0 (33)

{O AeR\(m(a),m(b))

Proof:
At first let us show that

Iimi p(A,x,&)dx =0, AeR (34)

by (24) one immediately gets that
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mp(/’t,x,g):lim{ L - J

#0( 1—m (x +i5)_l—m(X)—i5T1(5’X)

iim &T, (&.x)

g—)OPL(ﬂ—m(X +i5))(ﬂ—m(x)—i€T1(5’X))

Which implies that Ivingp(ﬂ,x,g):o by lemma (16). Now (33) is implied by (26) and the

]zO,ieR,x €0, ,6>0

Lebesque dominated convergence theorem. Next we set Lebesque

T3(t,x)zz(y _x1)2+32'(y L FOuly)x <O, (35)

Obviously there is a constant x, (&) > 0 such that
Oérs(g,X)SX3(5),Xe(a+5,b—5),ge[0,1] (36)
Let

1 B 1
A—-m(x)—ier,(e,x) A-m(x)—ieT,(0,x)

po(/'t,x,t): ,AeR,xe0, (37)

For £>0 , it follows from (20) , (35) and (37)

That

—ie’r,(&,%)
A—m(x)—ieT, (£,x))(2—-m(x)—ieT, (0,x))

o (i,x,8)=( (38)

Fore>0, since AeR and m(x) is real for xeO, we get from (38)

m

73 (&, %)

I e P AR

,AeR,xe0,,&>0 where

7, (e,x)=A-m(x)—ier, (&,x),
7,(0,x)=A-m(x)—ier,(0,x),
by using (23) and (36) we obtain the estimate
€14(9)

‘po(/i,x,g)‘é—z,ﬁ.e R xe(a+d,b-5),6e(0,1]
w; ()
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Which immediately yields?
lim—L po (A%, &)dx =0,1€R,5>0 (39)

Finally, let us introduce

1 1 1
qA(ﬂ’&g)zz_m.[aw(ﬂ—m(x)—igrl(o,x)_/I—m(x)+igrl(0,x)JdX “0)

b-o6

For AeR and ¢ >0. Using the representation

0, (1,5,5) = 1 J-b5[(/l—m(x)+igrl(O,X))—(/l—m(x)—igfl(o,X))]dx

27 (ﬂ—m(x)—igrl(o,x))(/l—m(x)+igr1(0,x))

1 Ib—& 2ier, (0,X) dx
_27“ a+o

(A-m(x))" +&%2,(0,x)’

a+d

Form the equation (20) 7,(0,x) = _[ o 1x)2 dx and the equation m’(x )= I i }X)dyz(y),x €0,

. We get this relation m'(x)=1z,(0,x),xe 0, from the equation (20) and equation (28) we get
after change of variable y =m(x ) that

q,(4.6,6)== em(x) dx

_1 em'(x) X eRe>0

7 ey (2= y) +&°7, (0.0, () M (X)

Where x =¢, (Y )

By 7,(0..¢.(Y))=m(a(y))=1/¢/(y),y €A_, we finally obtain that
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m(b—&) ’ 2
0. (L5,6)== | W) 4y R0 (41)
”m(a+é‘)¢i,(y) (i_y) +‘92

Next we prove the relation

limg, (2,6,6)=6, (4.6),6¢(0,(b~-a)/2), 2R (42)
We consider only the case when A e(m (a+68),m(b —5)). The other cases can be treated in a
similar way.
Noting that ¢/ (1) >0 choose an arbitraryC e (O,(p{ (i)) Since ¢ is continuous we can choose
n>0 suchthat m(a+d)<A-n<A+n<m(b+a) and

0<¢/(1)-C<¢/(y)<¢/ (1)+C,A-n<y <i+n (43)
Let a,b >0. The change of variables x =b (y —1)/ ¢ yields

A+n 2 2 by 2
j 3.82 y =2 {”%.fdx 57 s 60 (44)
b?(A-y) +& g 1+x% b

A-n

Setting a=¢/ (4)—C and b =¢ —C in (43) and using (44) we obtain

2
' (4)-C A '(y)
nwsnminf o (y) _dy (45)
P (A)+C 0 L g (y) (A-y) +e
+ ! ’ 2
fimint [ — A0 AAA-C)

y .
0 Lo (y) (A-y) +é ¢/ (4)+C
Setting G =(m(a+5),m(b-a))\(A-7,A+n) and applying the Lebesgue dominated

convergence theorem we get

. g¢i’(y)2
lim > —dy =0 (45)
S*"!%’(v) (A-y) +e

By (44) and (45)
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' 2 m(b— '
(@AC) _iing T ey

(Di’(ﬂ’)—l—c 0 m(a+d) ¢i,(y)2 (ﬂ'_)/)2 +52
m(b— ' ’ 2
<liminf T 2ol (y) dy < (¢ (A)+c)
T 50 ’ 2 _ 2 2 - ! ﬂ, —c
m(a+5)¢i (y) (ﬂ“ y) té& @ ( )

dy

(46)

Since (46) holds for every C €(0,¢{(4)), (46) in combination with (40) imply (41) combining
(18), (26), (36) and (39) we derive the representation

b-&

kA(ﬂ,é',S):%aL(p(l,X ,8)—p(/1,x ,g))+

L b (47)
(2o (2:%,8) = po( A%, 8))+0, (A% )

27” a+o

Where AR and € >0. Now combining the relation (33), (38) and (41) with (37) we arrive at
(41). The relation (32) immediately follows from (31). Now we are ready to calculate a non-

orthogonal spectral measure Zg in a gap of any self-adjoint extension A, = A € Ey, ifonly

A admits a boundary triple of a scalar-type Weyl function.
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