Journal of

Statistics and Acturial Research (JSAR)

INVERSE SPECTRAL PROPARTIES FOR SYMMETRIC OPERATORS WITH WEYL FUNCTIONS

Dr. Bashir Eissa Mohammad Abedrahaman

Research
ISSN 2518-881X
Vol 6, Issue 1, No.2, pp 20-42, 2022
www.iprjb.org

INVERSE SPECTRAL PROPARTIES FOR SYMMETRIC OPERATORS WITH WEYL FUNCTIONS

Dr. Bashir Eissa Mohammad Abedrahaman
Nyala University College of Science and Education, Sudan
Corresponding author E-mail bashireissa@Yahoo.com

Abstract

We prove that an operator measure in general is non-orthogonal and unbounded and two orthogonal spectral measures are unitarily equivalent. In accordance with the stieltjes inversion formula the spectral measure admits an analytic continuation .We discuss and prove a sharp estimate that a strictly monotone function on each component interval of the inverse function is analytic and also strictly monotone with Weyl functions.

Keywords: symmetric operator, adjoin extensions, Nevanlinna functions, Weyl functions.

Research
ISSN 2518-881X
Vol 6, Issue 1, No.2, pp 20-42, 2022
www.iprjb.org

INTRODUTION

Let S be a densely defined symmetric operator in Hilbert space \mathscr{H} with deficiency indices $n_{+}(S)=n_{-}(S) \leq \infty$. We recall that abounded open interval $J=(\alpha, \beta)$ is called a gap for S if

$$
\begin{equation*}
\|2 S-(\alpha, \beta)\| \geq(\alpha-\beta)\|f\|, f \in \operatorname{dom} s, \tag{1}
\end{equation*}
$$

if $\alpha \rightarrow-\infty$, then (1) turns into $(S f, f) \geq \beta\|f\|^{2}$ for all $f \in \operatorname{dom} S$, meaning that $(-\infty, \beta)$, is a gap for A if S is semi bounded below with the lower bound β.

Theorem (1):

Let $\left\{S_{k}\right\}_{k=1}^{\infty}$ be a family of closed symmetric operators S_{k}, defined in the separable Hilbert space R such that the operators S_{k} are unitarily equivalent to a closed symmetric operator A in h with equal positive deficiency indices. If there exists a boundary triple $\Pi_{0}=\left\{\mathcal{H}_{0}, \Gamma_{0}^{0}, \Gamma_{1}^{0}\right\}$ for A^{*} such that the corresponding Weyl function $M($.$) is monotone with respect to open set J \subseteq \rho\left(A_{0}\right)$, $A_{0}=A^{*} \mid \operatorname{ker}\left(\Gamma_{0}^{0}\right)$, then for any auxiliary self-adjoint operator R in some separable Hilbert space R the closed symmetric operator S admits a self-adjoin extension \tilde{S} such that the spectral, parts $\tilde{S_{J}}$ and R_{J} are unitarily equivalent i.e. $\tilde{S_{J}} \cong R_{j}$ [95.109,110].

The following result is known as a generalized Nuimark dilation theorem.

Proposition (2):

If $\sum():. B(R) \rightarrow[\mathscr{H}]$ is a bounded operator measure, then there exist a Hilbert space k abounded operator $k \in[\mathscr{H}, K]$ and an orthogonal measure $E()=.B(R) \rightarrow[k]$ (an orthogonal dilation) such that

$$
\begin{equation*}
\sum(\delta)=k^{*} E(\delta) k, \delta \in B(R) \tag{2}
\end{equation*}
$$

If the orthogonal dilation is minima i.e.,

$$
\begin{equation*}
\operatorname{span}\{E(\delta) \operatorname{ran}(k): \delta \in B(R)\}=K, \tag{3}
\end{equation*}
$$

Research
ISSN 2518-881X
Vol 6, Issue 1, No.2, pp 20-42, 2022
then it is uniquely determined up to unitary equivalence that is if one has two bounded operator $k \in[\mathscr{H}, k]$ and $K^{\prime} \in[\mathscr{H}, K]$ as well as two minimal orthogonal dilation $E()=.B(R) \rightarrow[K]$ and $E^{\prime}():. B(R) \rightarrow\left[K^{\prime}\right]$ obeying $\sum(\delta)=K^{*} E(\delta) K=K^{\prime *} E^{\prime}(\delta) K^{\prime}, \delta \in(R) B(R)$, then there exists an isometry $v: K^{\prime} \rightarrow K$ such that $E^{\prime}(\delta)=v^{*} E(\delta) v, \delta \in B(R)$.

Definition (3):

We call $E($.$) satisfying (2) and (3) the minimal orthogonal measure associated to \sum($.$) , or the$ minimal orthogonal dilation of $\sum($.$) .$

Every operator measure $\sum($.$) admits the Lebesque Jordan decomposition$ $\sum=\sum^{a c}+\sum^{s}, \sum^{s}=\sum^{s c}+\sum^{p p}$ where $\sum^{a c}, \sum^{s}, \sum^{s c}$ and $\sum^{p p}$ are the absolutely continuous, singular, singular continuous and pure point components (measure) of $\sum($.$) , respectively. Non-$ topological supports of mutually disjoint, therefore if an operator measure \sum is orthogonal, $\sum()=.E_{T}($.$) , then the ortho-projections p^{\tau}=E_{T}^{\tau}(R)(\tau \in\{a c, s c, p p\})$ are pair wise orthogonal. Every subspace $h_{T}^{\tau}=p^{\tau} h$ reduces the operator $T=T^{*}$ and the Lebesgue-Jordan decomposition yields

$$
\begin{align*}
h & =h_{T}^{a c} \oplus h_{T}^{s c} \oplus h_{T}^{p p} \tag{4}\\
T & =T^{a c} \oplus T^{s c} \oplus T^{p p}
\end{align*}
$$

Where $T^{\tau}=P^{\tau} T \uparrow h_{T}^{\tau}, \quad T \in\{a c, s c, p p\}$. Now we show Nevanlinna functions:
Let $\mathscr{H}_{\mathscr{H}}$ be a separable Hilbert space, we recall that an operator-valued function $F: c_{+} \rightarrow[\mathscr{H}]$ is said to be a Neranlinna (or Herglotz or $R_{\mathscr{H}}$) one if it is holomerphic and takes values in the set of dissipative operators on \mathscr{H} i.e.,

$$
\bar{S} m(F(z))=\frac{F(z)-F(z)^{*}}{2!} \geq 0, z \in C_{+}
$$

Research
ISSN 2518-881X
Vol 6, Issue 1, No.2, pp 20-42, 2022

Usually one considers a continuation of F in \square by setting $F(z)=F(\bar{z}), z \in C_{-}$. Bounded operator $k \in[\mathscr{H}, K]$ obeying $\operatorname{ker}(K)=\operatorname{ker} l \sum_{F}{ }^{0}(R)$ and $\sum_{F}^{0}(\delta)=k^{*} E_{F}(\delta) k, \delta \in B(R)$. By

$$
\begin{equation*}
\sum_{F}(\delta)=\int_{\delta}\left(1+t^{2}\right) d \sum_{F}^{0}(t), \delta \in B_{b}(R) \tag{5}
\end{equation*}
$$

One defines and operator measure which in general is non-orthogonal and unbounded. It is called the unbounded spectral measure of $F($.$) . Using \sum_{F}$ the representation [118],

$$
\begin{equation*}
F(z)=C_{0}+C_{1} z+\int_{-\infty}^{+\infty}\left(\frac{1}{t-z}-\frac{1}{1+t^{2}}\right) d \sum_{F}(t), z \in C_{+} \cup C_{-} \tag{6}
\end{equation*}
$$

To show this we have
From this representation $F(z)=C_{0}+C_{1} z+\int_{-\infty}^{+\infty} \frac{1+t z}{t-z} d \sum_{F}^{0}(t), z \in C_{+} \cup C_{-}$. To prove representation (6) use equation (5)

$$
\sum_{F}(\delta)=\int_{\delta}\left(1+t^{2}\right) d \sum_{F}^{0}(t), \delta \in B_{b}(R)
$$

so $d \sum_{F}(\delta)=\left(1+t^{2}\right) d \sum_{F}^{0}(t)$, which implies that $d \sum_{F}^{0}(t)=\frac{1}{1+t^{2}} d \sum_{F}(t)$, put this in the representation above we have

$$
F(z)=C_{0}+C_{1} z+\int_{-\infty}^{+\infty} \frac{1+t z}{t-z}\left(\frac{1}{1+t^{2}}\right) d \sum_{F}(t)=C_{0}+C_{1} z+\int_{-\infty}^{+\infty} \frac{1+t z}{(t-z)\left(1+t^{2}\right)}\left(\frac{1}{1+t^{2}}\right) d \sum_{F}(t)
$$

To analysis this component we use this $\frac{1+t z}{(t-z)\left(1+t^{2}\right)}=\frac{A}{t-z}+\frac{B t}{1+t^{2}}+\frac{c}{1+t^{2}}=1+t z$ and $A\left(1+t^{2}\right)+B t(t-z)+C(t-z)=1+t z$ put $t=z$ we get $A\left(1+z^{2}\right)=1+z^{2}$, so

Research
ISSN 2518-881X
Vol 6, Issue 1, No.2, pp 20-42, 2022
$A=1$ at $t=0, A-C z=1$ implies that $c=0$ since $A=1, c=0$. Our equation become $1+t^{2}+B_{t}(t-z)+0=1+t z, \quad B t(t-z)=1+t z-1-t^{2}=-t(t-z), B t=-t\left(\frac{t-z}{t-z}\right), \quad B=-1 \quad$.

Substituted A, B, and C the equation

$$
\frac{1+t z}{(t-z)\left(1+t^{2}\right)}=\frac{A}{t-z}+\frac{B t}{1+t^{2}}+\frac{C}{1+t^{2}}=1+t z
$$

We get the following

$$
\begin{align*}
& F(z)=C_{0}+C_{1}+\int_{-\infty}^{+\infty}\left(\frac{1}{t-z}-\frac{t}{1+t^{2}}\right) d \sum_{F}(t) \tag{7}\\
& z \in C_{+} \cup C_{-}
\end{align*}
$$

Which complete the proof. From representation

$$
F(z)=C_{0}+C_{1} z=\int_{-\infty}^{\infty} \frac{1-t z}{t-z} d \sum_{F}{ }^{0}(t), z \in C_{+} \cup C_{-}
$$

F determines uniquely the unbounded spectral measure $\sum_{F}($.$) by means of the Stieltjes inversion$ formula, which is given by

$$
\begin{equation*}
\sum_{F}((a, b))=s-\lim _{\delta \rightarrow+0} s-\lim _{\varepsilon \rightarrow+0} \frac{1}{\pi} \int_{a+\delta}^{b-\delta} S m(F(x+i \varepsilon)) d x \tag{8}
\end{equation*}
$$

By supp (F) we denote the topological (minimal closed) support of the spectral measure \sum_{F}.
Since supp (F) is closed the set $O_{F}=R \backslash \operatorname{supp}(F)$ is open. The Nevanlinna function $F($.$) admits$ an analytic continuation to O_{F} given by

$$
F(\lambda)=C_{0}+C_{1} \lambda+\int_{-\infty}^{+\infty}\left(\frac{1}{t-\lambda}-\frac{t}{1+t^{2}}\right) d \sum_{F}(t), \lambda \in O_{F}
$$

Research
ISSN 2518-881X
Vol 6, Issue 1, No.2, pp 20-42, 2022
www.iprjb.org

Using this representation we immediately find that $F($.$) is monotone on each component interval$ Δ of O_{F} i.e., $F(\lambda) \leq F(\mu), \lambda<\mu, \quad \lambda, \mu \in \Delta$. In general, this relation is not satisfied if λ and μ belong to different component interval.

Definition (4):

Let $F($.$) be a Nevanlinna function, the Nevanlinna function is monotone with respect to the open$ set $J \leq O_{F}$ if for any two component intervals J_{1} and J_{2} of J one has $F\left(\lambda_{1}\right) \leq F\left(\lambda_{2}\right)$ for all $\lambda_{1} \in J_{1}$ and $\lambda_{2} \in J_{2}$ or $F\left(\lambda_{1}\right) \geq F\left(\lambda_{2}\right)$ for all $\lambda_{1} \in J_{1}$ and $\lambda_{2} \in J_{2}$.

Let $L \in N \bigcup_{\infty}$ be the number of component interval of J . obviously if $F($.$) is monotone with$ respect to J and $L<\infty$, then there exists an enumeration $\left\{J_{k}\right\}_{k=1}^{L}$ of the components of J such that

$$
F\left(\lambda_{1}\right) \leq F\left(\lambda_{2}\right) \leq \ldots \leq F\left(\lambda_{L}\right)
$$

Holds for $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{L}\right\} \in J_{1} \times J_{2} \times \ldots \times J_{L}$. If $L=\infty$, then it can happen that such an enumeration does not exist. If $F($.$) is a scalar Nevanlinna function, then F($.$) is monotone with respect to \mathrm{J}$ if and only J if the condition $F\left(J_{1}\right) \cap F\left(J_{2}\right)=0$ is satisfied for any two component intervals J_{1} and J_{2} of J.

Definition (5):

A triple $\Pi=\left\{\mathscr{H}, \Gamma_{0}, \Gamma_{1}\right\}$ consisting of an auxiliary Hilbert space \mathscr{H}_{6} and linear mappings $\Gamma_{i}: \operatorname{dom}\left(A^{*}\right) \rightarrow \mathscr{H}, i=0,1$. Called a boundary triple for the adjoint operator A^{*} of A if the following two conditions are satisfied:
(i) The second Green's formula takes place

$$
\left(A^{*} f, g\right)-\left(f, A^{*} g\right)=\left(\Gamma_{1} f, \Gamma_{0} g\right)-\left(\Gamma_{0} f, \Gamma_{1} g\right), f, g \in \operatorname{dom}\left(A^{*}\right)
$$

Research
ISSN 2518-881X
Vol 6, Issue 1, No.2, pp 20-42, 2022
(ii) The mapping $\Gamma=\left\{\Gamma_{0}, \Gamma_{1}\right\}: \operatorname{dom}\left(A^{*}\right) \rightarrow \mathscr{H} \oplus \mathscr{H}, \Gamma f=\left\{\Gamma_{0} f, \Gamma_{1} f\right\}$ is subjective the above definition allows one to describe the set $E x t_{A}$ in the following way.

Proposition (6):

Let $\Pi=\left\{\mathscr{H}, \Gamma_{0}, \Gamma_{1}\right\}$ be a boundary triple for A^{*} then the mapping Γ established objective correspondence $\tilde{A} \rightarrow \theta=\Gamma(\operatorname{dom}(\tilde{A}))$ between the set $E x t_{A}$ of self-adjoin linear relations in \mathscr{H}. By proposition (6) the following definition is natural .

Definition (7):

Let $\Pi=\left\{\mathscr{H}, \Gamma_{0}, \Gamma_{1}\right\}$ be a boundary triple for A^{*}. We put $A_{\theta}=\tilde{A}$, if $\theta=\Gamma(\operatorname{dom}(\tilde{A}))$ that is $A_{\theta}=A^{*} \mid D_{\theta}$,

$$
\begin{equation*}
\operatorname{dom}\left(A_{\theta}\right)=D_{\theta}=\left\{f \in \operatorname{dom}\left(A^{*}\right):\left\{\Gamma_{\theta} f, \Gamma_{1} f\right\} \in \theta\right\} \tag{9}
\end{equation*}
$$

If $\theta=G(B)$ is the graph of an operator $B=B^{*} \in C(\mathscr{H})$, then $\operatorname{dom}\left(A_{\theta}\right)$ is determined by the equation $\operatorname{dom}\left(A_{B}\right)=D_{B}=\operatorname{ker}\left(\Gamma_{1}-B \Gamma_{0}\right)$. We set $A_{B}=A_{\theta}$

Let us recall the basic facts on Weyl functions.

Definition (8):

Let A be a densely defined closed symmetric operator and $\Pi=\left\{\mathscr{H}, \Gamma_{0}, \Gamma_{1}\right\}$ be a boundary triple for A^{*}. The unique mapping $M()=.\rho\left(A_{0}\right) \rightarrow[\mathscr{H}]$ defined by $\Gamma_{1} f_{z}=M(z) \Gamma_{0} f_{z}, f_{z} \in N_{z}=\operatorname{ker}\left(A^{*}-z\right), z \in C_{+}$

Is called the Weyl function corresponding to the boundary triple π.

Research
ISSN 2518-881X
Vol 6, Issue 1, No.2, pp 20-42, 2022

Proposition (9):

Let A be a simple closed symmetric operator and let $\Pi=\left\{\mathscr{H}, \Gamma_{0}, \Gamma_{1}\right\}$ be a boundary triple for A^{*} with Weyl function $M(\lambda)$. Suppose that is self-adjoint linear relation in \mathscr{H} and $\lambda \in \rho\left(\mathrm{A}_{0}\right)$ then
(i) $\quad \delta\left(\mathrm{A}_{0}\right)=\operatorname{supp}(\mathrm{M})$
(ii) $\quad \lambda \in \rho\left(\mathrm{A}_{\theta}\right)$ if and only if $\theta \in \rho(\theta-\mathrm{M}(\lambda))$
(iii) $\lambda \in \delta_{\mathrm{T}}\left(\mathrm{A}_{\theta}\right)$ if and only if $\mathrm{O} \in \delta_{\mathrm{T}}(\theta-\mathrm{M}(\lambda)) \cdot \mathrm{T} \in\{\mathrm{p}, \mathrm{c}\}$

We need the following simple proposition.

Proposition (10):

Let A be a closed symmetric operator and let $\Pi=\left\{\mathscr{H}, \Gamma_{0}, \Gamma_{1}\right\}$ be a boundary triple for A^{*}
(i) If A is simple and $\Pi_{1}=\left\{\mathscr{H}_{1}, \Gamma_{0}^{1}, \Gamma_{1}^{1}\right\}$ is another boundary triple for A^{*} such that $\operatorname{ker}\left(\Gamma_{0}\right)=\operatorname{ker}\left(\Gamma_{1}^{1}\right)$, then the Weyl functions $\mathrm{M}($.$) and \mathrm{M}_{1}($.$) of \Pi$ and Π_{1}, respectively are related by $M_{1}(z)=k^{*} M(z) k+D, \quad z \in C_{+} \cup C_{-}$. Where $D=D^{*} \in[\mathscr{H}]$ and $k \in\left[\mathscr{H}_{1}, \mathscr{H}\right]$ is boundedly invertible.
(ii) If $\theta=G(B), B=B^{*} \in \mathscr{H}$, then the Weyl function $\mathrm{M}_{\mathrm{B}}($.$) corresponding to the$ boundary triple $\Pi_{B}=\left\{\mathcal{H}, \Gamma_{0}^{B}, \Gamma_{1}^{B}\right\}=\left\{\mathcal{H}, B \Gamma_{0}-\Gamma_{1}, \Gamma_{0}\right\}$ is given by $M_{\beta}(z)=(B-M(z))^{-1}, z \in \square_{+} \cup \square_{-}$.

Definition (11):

Let A be a densely defined closed symmetric operator and let $\Pi=\left\{\mathscr{H}, \Gamma_{0}, \Gamma_{1}\right\}$ be a boundary triple for A^{*}. The mapping $\rho\left(A_{0}\right) \ni z \rightarrow \gamma(z) \in\left[\nLeftarrow N_{z}\right]$

$$
\gamma(z)=\left(\Gamma_{0} \mid N_{z}\right)^{-1}: H \rightarrow N_{z}, z \in \rho\left(A_{0}\right)
$$

is called the -filed of the boundary triple Π. One can easily have

Research
ISSN 2518-881X
Vol 6, Issue 1, No.2, pp 20-42, 2022

$$
\begin{equation*}
\gamma(z)=\left(A_{0}-z_{0}\right)\left(A_{0}-z_{0}\right)^{-1} \gamma\left(z_{0}\right), z, z_{0} \in \rho\left(A_{0}\right) \tag{10}
\end{equation*}
$$

The γ-field and the Weyl function $M($.$) are related by$

$$
M(z)-M\left(z_{0}\right)^{*}=\left(z-\bar{z}_{0}\right) \gamma\left(z_{0}\right)^{*} \gamma(z)
$$

Lemma (12):

Let A be a simple densely defined closed symmetric operator on a separable Hilbert space h with equal deficiency indies. Further let $\Pi=\left\{\mathscr{H}, \Gamma_{0}, \Gamma_{1}\right\}$ be a boundary triple for A^{*} with Weyl function $M($.$) . If E_{A_{0}}($.$) is the orthogonal spectral measure of A_{0}$ define on h and $E_{M}($.$) the$ associated minimal orthogonal spectral dilation of $\sum_{M}^{0}($.$) defined on such that E_{A_{0}}(\delta)=$ $W^{*} E_{M}(\delta) W$ for any Borel set $\delta \in B(R)$.

Proof:

By (10) one obtains

$$
\begin{equation*}
S(M(x+i y) h, h)=y(\gamma(x+i y) h,(x+i y) h) h \in \mathscr{H} \tag{11}
\end{equation*}
$$

To show this we have

$$
\operatorname{Sm}(M(z) h, h)=\frac{(M(z) h, h)-(M(z) h, h)^{*}}{2 i}
$$

Where

$$
\begin{aligned}
& z=x+i y=|h|[(M(z), 1)-(M(z), 1)] / 2 i \\
& =|h|\left[\left(z-\bar{z}_{0}\right) \gamma\left(z_{0}\right)^{*} \gamma(z)+M\left(z_{0}\right)-\left(z-\bar{z}_{0}\right)^{*} \gamma(z)^{*}-M\left(z_{0}\right)^{*}\right] / 2 i
\end{aligned}
$$

Multiply and divided by $\left(z-\tilde{z}_{0}\right) \gamma\left(z_{0}\right)^{*}$

$$
=\frac{|h|}{2 i}\left[\frac{\left(z-\tilde{z}_{0}\right) \gamma\left(z_{0}\right)^{*} \gamma(z)}{\left(z-\tilde{z_{0}}\right) \gamma\left(z_{0}\right)^{*}}-\frac{\left(z-\tilde{z}_{0}\right) \gamma\left(z_{0}\right) \gamma\left(z_{0}\right)^{*}}{\left(z-\tilde{z_{0}}\right) \gamma\left(z_{0}\right)^{*}}\right]
$$

Research
ISSN 2518-881X
Vol 6, Issue 1, No.2, pp 20-42, 2022

$$
\begin{aligned}
& =\frac{|h|}{2 i}\left[\gamma(z)-\gamma^{*}(z)\right]=\frac{|h|}{2 i}\left[\gamma(z)-\gamma^{*}(z)\right] \\
& =\frac{|h|}{2 i}\left[\gamma(z)-\left(\tilde{z}_{0}\right) \gamma\left(\tilde{z}_{0}\right)^{*} \gamma(z)\right] \\
& =|h|\left[\frac{\gamma(z)-\gamma^{*}(z)}{2}\left(z-\tilde{z}_{0}^{*}\right) \gamma^{*}\left(z_{0}\right)\right] \\
& =\frac{|h|}{2 i}\left[\left(z-\tilde{z}_{0}\right) \gamma^{*}\left(\tilde{z}_{0}\right) \gamma(z)-\gamma^{*}(z) \gamma^{*}\left(z_{0}\right)\left(z-\tilde{z_{0}}\right)\right] \\
& =\frac{|h|}{2 i} \gamma^{*}\left(z_{0}\right)\left[\left(z-\tilde{z}_{0}\right) \gamma(z)-\left(z-\tilde{z}_{0}\right) \gamma^{*}(z)\right]
\end{aligned}
$$

Where $\gamma^{*}\left(z_{0}\right) / i 2=y=|h| y[\gamma(z), \gamma(z)]=y(\gamma(z) h, \gamma(z) h)$
Since $z=x+i y$, we get

$$
\operatorname{Sm}(M(x+i y) h, h)=y(\gamma(x+i y) h, \gamma(x+i y) h)
$$

Which is the prove of (11). Further, it follows from (10) that

$$
\begin{equation*}
\gamma(x+i y)=\left[I+(x+i(y-1))\left(A_{0}-x-i y\right)^{-1}\right] \gamma(i) \tag{12}
\end{equation*}
$$

To prove (12) we use (10)

$$
\begin{aligned}
\gamma(z) & =\left(A_{0}-z\right)\left(A_{0}-z\right)^{-1} \gamma\left(z_{0}\right) \\
\gamma(z) & =A_{0}\left(A_{0}-z\right)^{-1} \gamma z_{0}-z_{0}\left(A_{0}-z\right)^{-1} \gamma\left(z_{0}\right) \\
& =A_{0} \frac{1}{A_{0}}\left(I-\frac{z}{A_{0}}\right)^{-1} \gamma\left(z_{0}\right)-z_{0}\left(A_{0}-z\right)^{-1} \gamma\left(z_{0}\right) \\
& =\left[\left(I-Z A_{0}^{-1}\right)^{-1}-Z_{0}\left(A_{0}-z\right)^{-1}\right] \gamma\left(z_{0}\right) \\
& =\left[\left(I+\sum_{n=1}^{\infty} Z^{n}\left\|A_{0}^{-1}\right\|^{n}-Z_{0}\left(A_{0}-Z\right)^{-1}\right)\right] \gamma\left(Z_{0}\right)
\end{aligned}
$$

Research
ISSN 2518-881X
Vol 6, Issue 1, No.2, pp 20-42, 2022

$$
=\left[I+\sum_{n=1}^{\infty} Z^{n+1}\left\|A_{0}^{n+1}\right\|-Z_{0}\left(A_{0}-Z\right)^{-1}\right] \gamma\left(Z_{0}\right)
$$

Since $A_{0}=A^{*}$ is self adjoint spectrum and $\left\|A_{0}^{n+1}\right\|=1$, so

$$
\begin{aligned}
& \gamma(z)=\left[I+\sum_{n=0}^{\infty} Z^{n+1}-Z_{0}\left(A_{0}-Z\right)^{-1}\right] \gamma\left(z_{0}\right) \\
& \quad=\left[I+\sum_{n=0}^{\infty} Z^{n} \cdot Z-Z_{0}\left(A_{0}-Z\right)^{-1}\right] \gamma\left(z_{0}\right)
\end{aligned}
$$

But $\sum_{n=0}^{\infty} z^{n}=\left(A_{0}-z\right)^{-1}$
Hence $\gamma(z)=\left[I+Z\left(A_{0}-z\right)^{-1}-Z_{0}\left(A_{0}\left(A_{0}-Z\right)^{-1}\right)\right] \gamma\left(Z_{0}\right)$

$$
=\left[I+\left(z-z_{0}\right)\left(A_{0}-Z\right)^{-1}\right] \gamma\left(Z_{0}\right)
$$

Let $x=0, y=1 \Rightarrow z_{0}=0+i$
Therefore $\gamma(z)=\left[I+(z-i)\left(A_{0}-z\right)^{-1}\right] \gamma(i)$
Since $z=x+i y$

$$
\begin{array}{r}
\gamma(x+i y)=\left[I+(x+i y-i)\left(A_{0}-(x+i y)\right)^{-1}\right] \gamma(i) \\
=\left[I+(x+i(y-1))\left(A_{0}-x-i y\right)^{-1}\right] \gamma(i)
\end{array}
$$

Which is the proof of (12). Inserting (12) into (11) one gets

$$
\operatorname{Sm}(M(x+i y) h, h)=y \int_{-\infty}^{+\infty} \frac{1+t^{2}}{(t-x)^{2}+y^{2}} d\left(E_{A_{0}}(t) \gamma(i) h, \gamma(i) h\right), h \in \mathbb{H}
$$

On the other hand we obtain that $d\left(\sum_{M}(t) h, h\right)=\left(1+t^{2}\right) d\left(E_{A_{0}}(t) \gamma(i) h, \gamma(i) h\right)$, inserting in the above representation we get

Research
ISSN 2518-881X
Vol 6, Issue 1, No.2, pp 20-42, 2022

$$
\operatorname{Sm}(M(x+i y) h, h)=\int_{-\infty}^{+\infty} \frac{d\left(\sum_{M}(t) h, h\right)}{(t-x)^{2}+y^{2}}, h \in \mathscr{H}
$$

Applying the stieltjes inversion formula (8) we find

$$
\left(\sum_{M}((a, b)) h, h\right)=\int_{(a, b)}\left(1+t^{2}\right) d\left(E_{A_{0}}(t) \gamma(i) h, h\right), h \in \mathscr{H}
$$

Which yields

$$
\begin{equation*}
\sum_{M}^{0}((a, b))=\gamma(i)^{*} E_{A_{0}}((a, b)) \gamma(i) \tag{13}
\end{equation*}
$$

for any bounded open interval $(a, b) \subseteq R$. Since A is simple it follows from (12) that

$$
\begin{equation*}
\left\{\left(A_{0}-\lambda\right)^{-1} \tan (\gamma(i)): \lambda \in C_{+} \cup C_{-}\right\}=h \tag{14}
\end{equation*}
$$

By (13) and (14), $E_{A_{0}}($.$) is a minimal orthogonal dilation of \sum_{M}^{0}($.$) . By proposition (5-1-2) we$ find that the spectral measure $E_{A_{0}}($.$) and E_{M}($.$) are unitarily equivalent.$

Definition (13):

Let $\Pi=\left\{\mathscr{H}, \Gamma_{0}, \Gamma_{1}\right\}$ be a boundary triple for A^{*} with corresponding Weyl function $M($.$) . We will$ call $\sum_{M}^{0}($.$) the bounded non-orthogonal spectral measure of the extension A_{0}=\left(A^{*} \mid \operatorname{ker}\left(\Gamma_{0}\right)\right)$.

Corollary (14):

Let A be a simple densely defined closed symmetric operator in a separable Hilbert space \mathcal{H}_{6} with equal deficiency indices. Further, let $\Pi=\left\{\mathscr{H}, \Gamma_{0}, \Gamma_{1}\right\}$ be a boundary triple for A^{*} and M (.) the corresponding Weyl function, then

$$
\delta\left(A_{0}\right)=\operatorname{supp}(M)=\operatorname{supp}\left(\sum_{M}\right), \delta_{T}\left(A_{0}\right)=\operatorname{supp}\left(\sum_{M}^{\tau}\right) . \text { Where } \tau \in\{a c, s, s c, p p\} .
$$

Research
ISSN 2518-881X
Vol 6, Issue 1, No.2, pp 20-42, 2022

Remark (15):

$M_{B}($.$) of the form M_{B}(z)=(B-M(z))^{-1}=\left(B-m(z) \cdot I_{q_{t}}\right)^{-1}$ is the Weyl function of the generalized boundary triple Π_{B}. Being a Wyle function. $M_{B}($.$) admits the representation$

$$
\begin{equation*}
M_{B}(z)=C_{0}+\int_{-\infty}^{+\infty}\left(\frac{1}{t-z}-\frac{t}{1+t^{2}}\right) d \sum_{B}(t), \quad z \in C_{+} \cup C_{-} \tag{15}
\end{equation*}
$$

Where $\sum_{B}()=.\sum_{M B}($.$) is the (unbounded) non-orthogonal spectral measure of M_{B}($.$) . In$ accordance with the Stieltjes inversion formula (8) the spectral measure can be re-obtained by

$$
\begin{equation*}
\sum_{B}(a, b)=s-\lim _{\delta \rightarrow 0} s-\lim _{\epsilon \rightarrow 0} \frac{1}{2 \pi i} \int_{a+\delta}^{b-\delta}\left(M_{B}(x+i \varepsilon)-M_{B}(x-i \varepsilon)\right) d x \tag{16}
\end{equation*}
$$

With $M(z)=M(\bar{z})^{*}$. We get

$$
\begin{equation*}
M_{B}(x+i \varepsilon)-M_{B}(x-i \varepsilon)=\int_{-\infty}^{+\infty}(\lambda-m(x+i \varepsilon))^{-1}-\int_{-\infty}^{+\infty}(\lambda-m(x+i \varepsilon))^{-1} d E_{B}(\lambda) \tag{17}
\end{equation*}
$$

Where $z=x+i \varepsilon$ and $z^{-*}=x-i \varepsilon$. The representation admits this

$$
M_{B}(x+i \varepsilon)-M_{B}(x-i \varepsilon)=\int_{-\infty}^{+\infty}\left((\lambda-m(x+i \varepsilon))^{-1}-(\lambda-m(x-i \varepsilon))^{-1}\right) d E_{B}(\lambda)
$$

By taking the integration both sides of equation (16) which leads to the expression

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{a+\delta}^{b-\delta}\left(M_{B}(x+i \varepsilon)-M_{B}(x-i \varepsilon)\right) d x \\
= & \frac{1}{2 \pi i} \int_{a+\delta}^{b-\delta+\infty} \int_{-\infty}\left((\lambda-m(x+i \varepsilon))^{-1}-(\lambda-m(x-i \varepsilon))^{-1}\right) d x \\
= & \int_{-\infty}^{+\infty} \frac{1}{2 \pi i} \int_{a+\delta}^{b-\delta}\left((\lambda-m(x+i \varepsilon))^{-1}-(\lambda-m(x-i \varepsilon))^{-1}\right) d E_{B}(\lambda)
\end{aligned}
$$

Put $=\frac{1}{2 \pi i} \int_{a+\delta}^{b-\delta}\left((\lambda-m(x+i \varepsilon))^{-1}-(\lambda-m(x-i \varepsilon))^{-1}\right) d x=k_{\Delta}(\lambda, \delta, t)$

Research
ISSN 2518-881X
Vol 6, Issue 1, No.2, pp 20-42, 2022

We get the following

$$
\begin{equation*}
=\frac{1}{2 \pi i} \int_{a+\delta}^{b-\delta}\left(\left(M_{B}(x+i \varepsilon)\right)^{-1}-\left(M_{B}(x-i \varepsilon)\right)^{-1}\right) d x=\int_{-\infty}^{+\infty} k_{\Delta}(\lambda, \delta, t) d E_{B}(\lambda), \varepsilon>0 \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{\Delta}(\lambda, \delta, \varepsilon)=\frac{1}{2 \pi i} \int_{a+\delta}^{b-\delta}\left((\lambda-m(x+i \varepsilon))^{-1}-(\lambda-m(x+i \varepsilon))^{-1}\right) d E_{B}(\lambda) \tag{19}
\end{equation*}
$$

$\lambda \varepsilon R, \Delta=(a, b) \subseteq R$ and $\varepsilon>0$ with $m(z)=\overline{m(\bar{z})}, z \varepsilon C_{-}$we denote by the family of the component intervals $\Delta_{L}=\left(a_{L}, b_{L}\right)$ of $O_{m}=R \backslash \operatorname{Supp}(m)$.

Further the function $M($.$) admits an analytic continuation to O_{m}$ such that

$$
m(x)=C_{0}+\int_{-\infty}^{+\infty}\left(\frac{1}{t-x}-\frac{t}{1+t^{2}}\right) d_{\mu}(t), x \in O_{m}
$$

Hence the function $m($.$) restricted to O_{m}$ is analytic. Moreover one easily verifies that for every component interval Δ of O_{m}

$$
m(x)<m(y), x<y, x, \quad y \varepsilon \Delta
$$

Therefore for every component interval Δ of O_{m} the set $\Delta^{\prime}=m(\Delta)$ is gain an open interval. Thus $O_{m}^{\prime}=m\left(O_{m}\right)$ is also open and the union of the sets $O^{\prime}=m(\Delta)$ where the union is taken over all component intervals Δ of O_{m}.

Lemma (16):

Let $m($.$) be a scalar Nevalinna function. If \Delta=(a, b)$ is contained in a component interval Δ_{L} of O_{m} then $C_{\Delta}(\delta)=\operatorname{Sup}_{\lambda \varepsilon R, \varepsilon \varepsilon(0,1]}\left|k_{\Delta}(\lambda, \delta, \varepsilon)\right|<\infty$, for each

$$
\begin{equation*}
\delta \in\left(0, \frac{b-a}{2}\right) \tag{20}
\end{equation*}
$$

Research
ISSN 2518-881X
Vol 6, Issue 1, No.2, pp 20-42, 2022

Proof:

we have

$$
\begin{equation*}
m(x+i \varepsilon)=m(x)-\varepsilon^{2} T_{0}(\varepsilon, x)+\bar{z} \varepsilon T_{1}(\varepsilon, x), x \varepsilon O_{m} \tag{21}
\end{equation*}
$$

Where

$$
\begin{equation*}
T_{0}(\varepsilon, x)=\int_{-\infty}^{+\infty} \frac{1}{y-x} \cdot \frac{1}{(y-x)^{2}+\varepsilon^{2}} d_{\mu}(y) \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{1}(\varepsilon, x)=\int_{-\infty}^{+\infty} \frac{1}{(y-x)^{2} \varepsilon^{2}} d_{\mu}(y) \tag{23}
\end{equation*}
$$

using (21) and (22) we find constant $x_{0}(\delta), k_{1}(\delta)$ and $w_{1}(\delta)$ such that $\left|T_{0}(\varepsilon, x)\right| \leq x_{0}(\delta)$ and $0<w_{1}(\delta) \leq T_{1}(t, x) \leq x_{1}(\delta)$,

$$
\begin{equation*}
x \in(a+\delta, b-\delta) \tag{24}
\end{equation*}
$$

For $\varepsilon \in[0,1]$ further we get from (20)

$$
\begin{align*}
P(\lambda, x, \varepsilon) & =\frac{1}{\lambda-m(x+i \varepsilon)}-\frac{1}{\lambda-m(x)-i \varepsilon T_{1}(\varepsilon, x)} \\
& =\frac{\lambda-m(x)-i \varepsilon T_{1}(\varepsilon, x)-\lambda+m(x+i \varepsilon)}{(\lambda-m(x+i \varepsilon))\left(\lambda-m(x)-i \varepsilon T_{1}(\varepsilon, x)\right)} \tag{25}
\end{align*}
$$

From (20) we get
$P(\lambda, x, \varepsilon)=\frac{\varepsilon^{2} T_{0}(\varepsilon, x)}{(\lambda-m(x+i \varepsilon))\left(\lambda-m(x)-i \varepsilon T_{1}(\varepsilon, x)\right)}, \lambda \in R, x \in O_{m}, \in>0$. Since both $m(x)$ and $T_{0}(\in, x)$ are real for $x \in O_{m}$ we have from (20) that $|\lambda-m(x+i \varepsilon)| \geq \varepsilon T_{1}(\varepsilon, x)$ and $\left|\lambda-m(x)-i \varepsilon T_{1}\right| \geq \varepsilon T_{1}(\varepsilon, x), \lambda \in R$. In view of (36) these inequalities yield

Research

ISSN 2518-881X
Vol 6, Issue 1, No.2, pp 20-42, 2022

$$
\begin{equation*}
|p(\lambda, x, \varepsilon)| \leq\left|\frac{T_{0}(t, x)}{T_{1}(t, x)^{2}}\right|, \lambda \in R, x \in O_{m}, \varepsilon>0 \tag{26}
\end{equation*}
$$

Combining (23) with (25) we obtain the estimate

$$
\begin{equation*}
|P(\lambda, x, \varepsilon)| \leq \frac{x_{0}(\delta)}{w_{1}(\delta)^{2}}, \lambda \in R, x \in(a+\delta, b-\delta), \varepsilon \in(0,1] \tag{27}
\end{equation*}
$$

We set

$$
r_{\Delta}(\lambda, \delta, \varepsilon)=\frac{1}{2 \pi i} \int_{a+\delta}^{b-\delta}\left(\frac{1}{\lambda-m(x)-i \varepsilon T_{1}(\varepsilon, x)}-\frac{1}{\lambda-m(x)+i \varepsilon T_{1}(\varepsilon, x)}\right) d x
$$

for $\lambda \in R$ and $\varepsilon>0$. By the representation

$$
\begin{aligned}
& r_{\Delta}(\lambda, \delta, \varepsilon)=\frac{1}{2 \pi i} \int_{a+\delta}^{b-\delta} \frac{\lambda-m(x)+i \varepsilon T_{1}(\varepsilon, x)-\lambda+m(x)+i \varepsilon T_{1}(\varepsilon, x)}{\left(\lambda-m(x)-i \varepsilon T_{1}(\varepsilon, x)\right)\left(\lambda-m(x)+i \varepsilon T_{1}(\varepsilon, x)\right)} d x \\
&= \frac{1}{2 \pi i} \int_{a+\delta}^{b-\delta}\left(\frac{2 i \varepsilon T_{1}(\varepsilon, x)}{\left(\lambda-m(x)^{2}+\varepsilon^{2} T_{1}(\varepsilon, x)^{2}\right)}\right) d x \\
& \quad=\frac{1}{\pi} \int_{a+\delta}^{b-\delta}\left(\frac{\varepsilon T_{1}(\varepsilon, x)}{\left(\lambda-m(x)^{2}+\varepsilon^{2} T_{1}(\varepsilon, x)^{2}\right)}\right) d x
\end{aligned}
$$

and the estimate (23) we obtain that $T_{1}(\varepsilon, x)=x_{1}(\delta)$ and $T_{1}(\varepsilon, x)^{2}=w_{1}^{2}(\delta)$ put this in the above equation we get

$$
\begin{equation*}
r_{\Delta}(\lambda, \delta, \varepsilon)=\frac{1}{\pi} \int_{a+\delta}^{b-\delta} \frac{\varepsilon x_{1}(\delta)}{\left(\lambda-m(x)^{2}+\varepsilon^{2} w_{1}^{2}(\delta)\right)} d x, \lambda \in R, \varepsilon \in(0,1] \tag{28}
\end{equation*}
$$

Form this equation

$$
m(x)=C_{0}+\int_{-\infty}^{+\infty}\left(\frac{1}{t-x}-\frac{t}{1+t^{2}}\right) d_{\mu}(t), x \in O_{m}
$$

The derivation $m^{\prime}(x), x \in O_{m}$, admits the representation

Research
ISSN 2518-881X
Vol 6, Issue 1, No.2, pp 20-42, 2022

$$
\begin{equation*}
m^{\prime}(x)=\int_{-\infty}^{+\infty} \frac{1}{(1-x)^{2}} d \mu(t), x \in O_{m} \tag{29}
\end{equation*}
$$

Obviously, there exist constants $w_{z}(\delta)$ and $x_{2}(\delta)$ such that

$$
\begin{equation*}
0<w_{2}(\delta) \leq m^{\prime}(x) \leq x_{2}(\delta), x \in(a+\delta, b-\delta) \tag{30}
\end{equation*}
$$

By combining the equation (27) and equation (29) where $0<w_{2}(\delta) \leq m^{\prime}(x), x \in(a+\delta, b-\delta)$ we have the following
$r_{\Delta}(\lambda, \delta, \varepsilon) \leq \frac{x_{1}(\delta)}{\pi w_{2}(\delta)} \int_{a+\delta}^{b-\delta} \frac{\varepsilon \cdot m^{\prime}(x)}{(\lambda-m(x))^{2}+\varepsilon^{2} w_{1}^{2}(\delta)} d x, \quad \lambda, R, \varepsilon \in(0,1]$.
Using the substitution $y=m(x)$ we derive that $\frac{d y}{d x}=m^{\prime}(x)$ so $d x=\frac{d y}{m^{\prime}(x)}$ in the equation we get

$$
\begin{aligned}
r_{\Delta}(\lambda, \delta, \varepsilon) & \leq \frac{x_{1}(\delta)}{\pi w_{2}(\delta)} \int_{a+\delta}^{b-\delta} \frac{\varepsilon \cdot m^{\prime}(x)}{(\lambda-m(x))^{2}+\varepsilon^{2} w_{1}^{2}(\delta)} \frac{d y}{m^{\prime}(x)} \\
& \leq \frac{x_{1}(\delta)}{\pi w_{2}(\delta)} \int_{m(a+\delta)}^{m(b-\delta)} \frac{\varepsilon}{(\lambda-y)^{2}+\varepsilon^{2} w_{1}^{2}(\delta)} d y, \lambda \in R, \varepsilon \in(0,1]
\end{aligned}
$$

Finally, we get

$$
\begin{equation*}
r_{\Delta}(\lambda, \delta, \varepsilon) \leq \frac{x_{1}}{w_{1} w_{2}}, \lambda \in R, \varepsilon \in(0,1] \tag{31}
\end{equation*}
$$

Obviously we have

$$
k_{\Delta}(\lambda, \delta, \varepsilon)=\frac{1}{2 \pi i} \int_{a+\delta}^{b-\delta}(\rho)(\lambda, \delta, \varepsilon)-\overline{\rho(\lambda, \delta, \varepsilon)} d x+r_{\Delta}(\lambda, \delta, \varepsilon), \lambda \in R, \varepsilon>0
$$

Hence we find the estimate

$$
\left|k_{\Delta}(\lambda, \delta, \varepsilon)\right| \leq \frac{1}{\pi} \int_{a+\delta}^{b-\delta}|\rho(\lambda, \delta, \varepsilon)| d x+r_{\Delta}(\lambda, \delta, \varepsilon), \lambda \in R, \varepsilon>0
$$

Research
ISSN 2518-881X
Vol 6, Issue 1, No.2, pp 20-42, 2022

Taking into account equation $|\rho(\lambda, \delta, \varepsilon)| \leq \frac{x_{0}(\delta)}{w_{1}(\delta)^{2}}$ and the equation $r_{\Delta}(\lambda, \delta, \varepsilon) \leq \frac{x_{1}}{w_{1} w_{2}}$ we arrive at the estimate $\left|k_{\Delta}(\lambda, \delta, \varepsilon)\right| \leq \frac{x_{0}}{\pi w_{1}(\delta)}(b-a)+\frac{x_{1}(\delta)}{w_{1}(\delta) w_{2}(\delta)}, \lambda \in R, \varepsilon \in(0,1]$. Which proves (19).

Since the function O_{m} is strictly monotone on each component interval Δ_{i} of O_{m} the inverse function $\varphi_{i}($.$) exists there. The function \varphi_{i}($.$) is analytic and also strictly monotone, its first$ derivative $\varphi_{i}^{\prime}($.$) exists, it is analytic and non-negative.$

Lemma (17):

Suppose that $m($.$) is a scalar Nevanlinna function, let \Delta=(a, b)$ be contained is some component interval Δ_{i} of $O_{m}=R \backslash \operatorname{supp}(m)$, then (with k_{Δ} defined as in (18)).

$$
\lim _{\varepsilon \rightarrow+0} k_{\Delta}(\lambda, \delta, \varepsilon)=\theta_{L}(\lambda, \delta)= \begin{cases}0 & \lambda \in R \backslash[m(a+\delta), m(b-\delta)] \tag{32}\\ \frac{1}{2} \varphi_{L}^{\prime} \lambda \in\{m(a+\delta), m(b-\delta)\} \\ \varphi_{L}^{\prime}(\lambda) & \lambda \in(m(a+\delta), m(b-\delta))\end{cases}
$$

For $\delta \in(0,(b-a) / 2)$ and

$$
\lim _{\varepsilon \rightarrow+0} \lim _{\varepsilon \rightarrow+0} k_{\Delta}(\lambda, \delta, \varepsilon)=\theta_{L}(\lambda, \delta)= \begin{cases}0 & \lambda \in R \backslash(m(a), m(b)) \tag{33}\\ \varphi_{L}^{\prime}(\lambda) & \lambda \in(m(a), m(b))\end{cases}
$$

Proof:

At first let us show that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \pi i} \int_{a+\delta}^{b-\delta} \rho(\lambda, x, \varepsilon) d x=0, \quad \lambda \in R \tag{34}
\end{equation*}
$$

by (24) one immediately gets that

Research

ISSN 2518-881X
Vol 6, Issue 1, No.2, pp 20-42, 2022

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \rho(\lambda, x, \varepsilon)=\lim _{\varepsilon \rightarrow 0}\left(\frac{1}{\lambda-m(x+i \varepsilon)}-\frac{1}{\lambda-m(x)-i \varepsilon T_{1}(\varepsilon, x)}\right) \\
& =\lim _{\varepsilon \rightarrow 0} \rho\left(\frac{\varepsilon^{2} T_{0}(\varepsilon, x)}{(\lambda-m(x+i \varepsilon))\left(\lambda-m(x)-i \varepsilon T_{1}(\varepsilon, x)\right)}\right)=0, \lambda \in R, x \in O_{m}, \varepsilon>0
\end{aligned}
$$

Which implies that $\lim _{\varepsilon \rightarrow 0} \rho(\lambda, x, \varepsilon)=0$ by lemma (16). Now (33) is implied by (26) and the Lebesque dominated convergence theorem. Next we set Lebesque

$$
\begin{equation*}
T_{3}(t, x)=\int_{-\infty}^{+\infty} \frac{1}{(y-x)^{2}+\varepsilon^{2}} \cdot \frac{1}{(y-x)^{2}} d \mu(y), x \in O_{m}, t \geq 0 \tag{35}
\end{equation*}
$$

Obviously there is a constant $x_{3}(\delta)>0$ such that

$$
\begin{equation*}
0 \leq \tau_{3}(\varepsilon, x) \leq x_{3}(\delta), x \in(a+\delta, b-\delta), \varepsilon \in[0,1] \tag{36}
\end{equation*}
$$

Let

$$
\begin{equation*}
\rho_{0}(\lambda, x, t)=\frac{1}{\lambda-m(x)-i \varepsilon \tau_{1}(\varepsilon, x)}-\frac{1}{\lambda-m(x)-i \varepsilon T_{1}(0, x)}, \lambda \in R, x \in O_{m} \tag{37}
\end{equation*}
$$

For $\varepsilon>0$, it follows from (20), (35) and (37)
That

$$
\begin{equation*}
\rho_{0}(\lambda, x, \varepsilon)=\frac{-i \varepsilon^{3} \tau_{3}(\varepsilon, x)}{\left(\lambda-m(x)-i \varepsilon T_{1}(\varepsilon, x)\right)\left(\lambda-m(x)-i \varepsilon T_{1}(0, x)\right)} \tag{38}
\end{equation*}
$$

For $\varepsilon>0$, since $\lambda \in R$ and $m(x)$ is real for $x \in O_{m}$ we get from (38) $\left|\rho_{0}(\lambda, x, \varepsilon)\right| \leq \in \frac{\tau_{3}(\varepsilon, x)}{\tau_{1}(\varepsilon, x) T_{1}(0, x)}, \lambda \in R, x \in O_{m}, \varepsilon>0$ where

$$
\begin{aligned}
& \tau_{1}(\varepsilon, x)=\lambda-m(x)-i \varepsilon \tau_{1}(\varepsilon, x), \\
& \tau_{1}(0, x)=\lambda-m(x)-i \varepsilon \tau_{1}(0, x),
\end{aligned}
$$

by using (23) and (36) we obtain the estimate

$$
\left|\rho_{0}(\lambda, x, \varepsilon)\right| \leq \frac{\varepsilon \tau_{3}(\delta)}{w_{1}(\delta)^{2}}, \lambda \in R, x \in(a+\delta, b-\delta), \varepsilon \in(0,1]
$$

Research

ISSN 2518-881X
Vol 6, Issue 1, No.2, pp 20-42, 2022

Which immediately yields?

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \pi i} \int_{a+\delta}^{b-\delta} \rho_{0}(\lambda, x, \varepsilon) d x=0, \lambda \in R, \delta>0 \tag{39}
\end{equation*}
$$

Finally, let us introduce

$$
\begin{equation*}
q_{\Delta}(\lambda, \delta, \varepsilon)=\frac{1}{2 \pi i} \int_{a+\delta}^{b-\delta}\left(\frac{1}{\lambda-m(x)-i \varepsilon \tau_{1}(0, x)}-\frac{1}{\lambda-m(x)+i \varepsilon \tau_{1}(0, x)}\right) d x \tag{40}
\end{equation*}
$$

For $\lambda \in R$ and $\varepsilon>0$. Using the representation

$$
\begin{aligned}
& q_{\Delta}(\lambda, \delta, \varepsilon)=\frac{1}{2 \pi i} \int_{a+\delta}^{b-\delta}\left(\frac{\left(\lambda-m(x)+i \varepsilon \tau_{1}(0, x)\right)-\left(\lambda-m(x)-i \varepsilon \tau_{1}(0, x)\right)}{\left(\lambda-m(x)-i \varepsilon \tau_{1}(0, x)\right)\left(\lambda-m(x)+i \varepsilon \tau_{1}(0, x)\right)}\right) d x \\
& =\frac{1}{2 \pi i} \int_{a+\delta}^{b-\delta}\left(\frac{2 i \varepsilon \tau_{1}(0, x)}{(\lambda-m(x))^{2}+\varepsilon^{2} \tau_{1}(0, x)^{2}}\right) d x
\end{aligned}
$$

Form the equation (20) $\tau_{1}(0, x)=\int_{-\infty}^{+\infty} \frac{1}{(y-x)^{2}} d \mu$ and the equation $m^{\prime}(x)=\int_{-\infty}^{+\infty} \frac{1}{(t-x)} d \mu \geq(y), x \in O_{m}$
. We get this relation $m^{\prime}(x)=\tau_{1}(0, x), x \in O_{m}$ from the equation (20) and equation (28) we get after change of variable $y=m(x)$ that

$$
\begin{aligned}
q_{\Delta}(\lambda, \delta, \varepsilon) & =\frac{1}{\pi} \int_{m(a+\delta)}^{(b-\delta)} \frac{\varepsilon m^{\prime}(x)}{(\lambda-m(x))^{2}+\varepsilon^{2} \tau_{1}(0, x)^{2}} d x \\
& =\frac{1}{\pi} \int_{m(a+\delta)}^{(b-\delta)} \frac{\varepsilon m^{\prime}(x)}{(\lambda-y)^{2}+\varepsilon^{2} \tau_{1}\left(0, \varphi_{L}(y)\right)^{2}} \frac{d x}{m^{\prime}(x)}, \lambda \in R, \varepsilon>0 \\
& =\frac{1}{\pi} \int_{m(a+\delta)}^{m(b-\delta)} \frac{\varepsilon}{(\lambda-y)^{2}+\varepsilon^{2} \tau_{1}\left(0, \varphi_{L}(y)\right)^{2}} d x
\end{aligned}
$$

Where $x=\varphi_{i}(y)$
By $\tau_{1}\left(0,, \varphi_{i}(y)\right)=m^{\prime}\left(\varphi_{i}(y)\right)=1 / \varphi_{i}^{\prime}(y), y \in \Delta_{L}$, we finally obtain that

Research
ISSN 2518-881X
Vol 6, Issue 1, No.2, pp 20-42, 2022

$$
\begin{equation*}
q_{\Delta}(\lambda, \delta, \varepsilon)=\frac{1}{\pi} \int_{m(a+\delta)}^{m(b-\delta)} \frac{t \varphi_{i}^{\prime}(y)^{2}}{\varphi_{i}^{\prime}(y)^{2}(\lambda-y)^{2}+\varepsilon^{2}} d y, y \in R, \varepsilon>0 \tag{41}
\end{equation*}
$$

Next we prove the relation

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} q_{\Delta}(\lambda, \delta, \varepsilon)=\theta_{L}(\lambda, \delta), \delta \in(0,(b-a) / 2), \lambda \in R \tag{42}
\end{equation*}
$$

We consider only the case when $\lambda \in(m(a+\delta), m(b-\delta))$. The other cases can be treated in a similar way.

Noting that $\varphi_{i}^{\prime}(\lambda)>0$ choose an arbitrary $C \in\left(0, \varphi_{i}^{\prime}(\lambda)\right)$. Since φ_{i}^{\prime} is continuous we can choose $\eta>0$ such that $m(a+\delta)<\lambda-\eta<\lambda+\eta<m(b+a)$ and

$$
\begin{equation*}
0<\varphi_{i}^{\prime}(\lambda)-C \leq \varphi_{i}^{\prime}(y) \leq \varphi_{i}^{\prime}(\lambda)+C, \lambda-\eta<y \leq \lambda+\eta \tag{43}
\end{equation*}
$$

Let $a, b>0$. The change of variables $x=b(y-\lambda) / \varepsilon$ yields

$$
\begin{equation*}
\int_{\lambda-\eta}^{\lambda+\eta} \frac{a^{2} \varepsilon}{b^{2}(\lambda-y)^{2}+\varepsilon^{2}} d y=\frac{a^{2}}{\varepsilon} \int_{-\frac{b \eta}{\varepsilon}}^{\frac{b \eta}{\varepsilon}} \frac{1}{1+x^{2}} \cdot \frac{\varepsilon}{b} d x \rightarrow \frac{\pi a^{2}}{b} \text { as } \varepsilon \rightarrow 0 \tag{44}
\end{equation*}
$$

Setting $a=\varphi_{i}^{\prime}(\lambda)-C$ and $b=\varphi_{i}^{\prime}-C$ in (43) and using (44) we obtain

$$
\begin{align*}
& \pi \frac{\left(\varphi_{i}^{\prime}(\lambda)-C\right)^{2}}{\varphi_{i}^{\prime}(\lambda)+C} \leq \liminf _{\varepsilon \rightarrow 0} \int_{\lambda-\eta}^{\lambda+\eta} \frac{\varepsilon \varphi_{i}^{\prime}(y)^{2}}{\varphi_{i}^{\prime}(y)^{2}(\lambda-y)^{2}+\varepsilon^{2}} d y \tag{45}\\
& \liminf _{\varepsilon \rightarrow 0} \int_{\lambda-\eta}^{\lambda+\eta} \frac{\varepsilon \varphi_{i}^{\prime}(y)^{2}}{\varphi_{i}^{\prime}(y)^{2}(\lambda-y)^{2}+\varepsilon^{2}} d y \leq \pi \frac{\left(\varphi_{i}^{\prime}(\lambda)-C\right)^{2}}{\varphi_{i}^{\prime}(\lambda)+C}
\end{align*}
$$

Setting $G=(m(a+\delta), m(b-a)) \backslash(\lambda-\eta, \lambda+\eta)$ and applying the Lebesgue dominated convergence theorem we get

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{G} \frac{\varepsilon \varphi_{i}^{\prime}(y)^{2}}{\varphi_{i}^{\prime}(y)^{2}(\lambda-y)^{2}+\varepsilon^{2}} d y=0 \tag{45}
\end{equation*}
$$

By (44) and (45)

Research
ISSN 2518-881X
Vol 6, Issue 1, No.2, pp 20-42, 2022

$$
\begin{align*}
& \pi \frac{\left(\varphi_{i}^{\prime}(\lambda)-C\right)^{2}}{\varphi_{i}^{\prime}(\lambda)+C} \leq \liminf _{\varepsilon \rightarrow 0} \int_{m(a+\delta)}^{m(b-\delta)} \frac{\varepsilon \varphi_{i}^{\prime}(y)^{2}}{\varphi_{i}^{\prime}(y)^{2}(\lambda-y)^{2}+\varepsilon^{2}} d y \tag{46}\\
& \leq \liminf _{\varepsilon \rightarrow 0} \int_{m(a+\delta)}^{m(b-\delta)} \frac{\varepsilon \varphi_{i}^{\prime}(y)^{2}}{\varphi_{i}^{\prime}(y)^{2}(\lambda-y)^{2}+\varepsilon^{2}} d y \leq \frac{\left(\varphi_{i}^{\prime}(\lambda)+c\right)^{2}}{\varphi_{i}^{\prime}(\lambda)-c}
\end{align*}
$$

Since (46) holds for every $C \in\left(0, \varphi_{1}^{\prime}(\lambda)\right)$, (46) in combination with (40) imply (41) combining (18), (26), (36) and (39) we derive the representation

$$
\begin{align*}
& k_{\Delta}(\lambda, \delta, \varepsilon)=\frac{1}{2 \pi i} \int_{a+\delta}^{b-\delta}(\rho(\lambda, x, \varepsilon)-\rho \overline{(\lambda, x, \varepsilon)})+ \tag{47}\\
& \frac{1}{2 \pi i} \int_{a+\delta}^{b-\delta}\left(\rho_{0}(\lambda, x, \varepsilon)-\rho_{0} \overline{(\lambda, x, \varepsilon)}\right)+q_{\Delta}(\lambda, x, \varepsilon)
\end{align*}
$$

Where $\lambda \in R$ and $\varepsilon>0$. Now combining the relation (33), (38) and (41) with (37) we arrive at (41). The relation (32) immediately follows from (31). Now we are ready to calculate a nonorthogonal spectral measure \sum_{B}^{0} in a gap of any self-adjoint extension $A_{B}=A_{B}^{*} \in E_{X_{A}}$ if only A admits a boundary triple of a scalar-type Weyl function.

Research
ISSN 2518-881X
Vol 6, Issue 1, No.2, pp 20-42, 2022

REFERENCE

Johames F. Brasche, M. Malamud and Hagen Weyl function and Spectral properties of selfadjoint extensions-Berlin-Germany.
Ju. M. Berezanskii "Expansion in Eigen functions of self-adjoin Operator" Naukova Dumka, Kiev Eng. transl. Amer. Math. R. I., (1968).
J.F. Brache, H. Neidhardt, J. Weidmann, on the point spectrum of Self-adjoint extensions, Math Zeischr,
J.F. Brache, H.Neidhardt, on the singular continuous spectrum of self -Adjoint extensions. Math. Zeitschr.
J. F. Brache, M. M. Malamud and H., Neidhanlt Weyl functions and Singular continuous spectra of self -adjoint extensions. Gesztesy. Fritz(ed) et al. Stochastic processes and physics and geometry. Germany (1999).

