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Abstract 

Purpose: The purpose of the study was to model natural turbulent convection in an enclosure with 

localized heating. 

Methodology: The study considered the equations governing a free convection. Precisely, the 

equations governed a Newtonian fluid that experiences transfer of heat or mass. The governing 

equations were derived from the conservation principles namely the conservation of mass, the 

conservation of momentum, and the conservation of energy. These equations were decomposed 

using the Reynolds decomposition then the decomposed equations were non-dimensionalized and 

reduced using the Boussinesq assumptions. The k-ε model was employed in the simulation of flow 

characteristics. Finally, the equations were solved numerically for the flow quantities. 

Results: The results were presented in form of isotherms and vector potentials in different sections 

of the enclosure. The results of the study indicated that the variation of the Rayleigh number affects 

the flow properties such as the velocity and temperature. Specifically, it was found that the increase 

in the Rayleigh number results in the increase in the velocity magnitude and a decrease in 

temperature. 

Unique contribution to theory, practice and policy: The determination of flow properties is 

attained with the change in the dimensions of the enclosure and keeping the aspect ratio constant. 

Furthermore, the bottom wall is heated while the top wall is cold and the other four walls are 

adiabatic. It is recommended that and investigation is carried out instances where: one makes use 

of a difference turbulence model such as the k-ω SST turbulence model and observe the fluid 

properties one carries out an investigation keeping the Rayleigh number constant and varying the 

aspect ratio and the dimensions of the enclosure and where investigation of the fluid properties in 

the enclosure with a heater being introduced at the bottom wall and a window at the top wall. 

Keywords: Natural turbulent convection, Localized Heating. 
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1.0 INTRODUCTION 

A fluid is defined as a substance that undergoes deformation when an external force is subjected 

to it. The fluid may be a liquid or a gas. There are two categories of fluid mechanics namely fluid 

kinematics and fluid dynamics. Fluid kinematics involves the study of forces that are involved in 

the motion of fluids while fluid dynamics involves the study of states of fluid motion. The flow of 

fluids can be categorized depending on the properties of the fluid or depending on the properties 

of the flow (Mebrouk, 2016). With regard to the properties of the fluid, there are ideal and real 

flows, incompressible and compressible flows. On the other hand, the types of flow depending on 

properties of flow could be laminar and turbulent flow, steady and unsteady flow, or uniform and 

non-uniform flow. An ideal fluid flow involves the flow of an ideal fluid whereby there is no 

resistance encountered in the flow while a real fluid flow occurs for a fluid that is viscous in nature 

and there is a certain amount of resistance to flow.  In a uniform flow, the velocity and other 

parameters such as the pressure of the fluid do not change from one point to the other while in a 

non-uniform flow there are changes in the hydrodynamic parameters such as pressure and density 

from one point to the other as the fluid flows (Li, Luo & Fan, 2017).  

In an incompressible fluid flow, there is an assumption that the density of the fluid does not change 

over the flow path while in a compressible flow the density is a function of temperature and 

pressures in the flow field. A flow in which the fluid particles follow a smooth path and hence 

does not interfere with each other is called a laminar flow while a turbulent flow is a flow that is 

characterized by irregular flow and occurs in the instances that the velocity of the fluid is high. In 

a turbulent flow, there are whirlpools. A steady flow is one in which the fluid properties such as 

velocity, pressure, temperature, and density are independent of time while in an unsteady flow the 

fluid properties are functions of time. Specifically, this study was be based on turbulent flow 

(Mushtaq, Mustafa, Hayat & Alsaedi, 2018). 

The transfer of heat can occur in three ways namely conduction, convection, and radiation. In 

conduction, the transfer of heat occurs when two objects that have different temperatures come in 

contact with one another. The flow of heat moves from the object with the higher temperature to 

the one with a lower temperature. Convection is an efficient way of heat transfer in fluids and 

occurs as a result of differences in temperatures in varying areas of the fluid. Precisely, convection 

occurs when cooler fluids occupy the place for the warmer fluid resulting in a continuous 

circulation of fluids. In radiation, the flow of heat does not depend on the availability of any contact 

between the objects or fluid for heat to be transferred (Daniel & Daniel, 2015).   

This study was mainly based on the study of the transfer of heat through convection. In a natural 

convection, the occurrence of motion of a fluid result from the gravitational field that occurs due 

to the differences in density resulting from varying temperatures. Along these lines, there was a 

buoyant force causing dense fluid parts to move to the lower region while the less dense fluid parts 

to move upwards. The investigation on the effects of the flow of fluids due to buoyancy is 

applicable in practical occurrences such as in the process of thermal insulation of buildings, 

cooling of electronic packages, as well as in passive heat removal systems of a liquid metal nuclear 

reactor among other engineering applications. 
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1.2 Statement of the Problem 

In the past there have been studies on the modeling of natural turbulent convection flow of fluids 

in an enclosure. Natural convection has myriad applications in the engineering practice including 

the thermal insulation of buildings. However, the determination of fluid quantities such as velocity, 

temperature, pressure, and or density is challenging due to the presence of unknown turbulent 

correlations in the equations governing turbulent flows. This is attributed to the fact that the terms 

are nonlinear. Along these lines, there is need for the development of a model that could help in 

solving for the fluid quantities in a natural convection.  

1.3 Objectives of the Study 

To model natural turbulent convection in an enclosure with Localized Heating. 

1.3.1 Specific Objectives 

i. To obtain the velocity of flow in different parts of the enclosure.  

ii. To determine the temperature variations in different parts of the enclosure. 

iii. To determine the effects of varying the Rayleigh number on the heat transfer. 

2.0 LITERATURE REVIEW 

Different studies have been carried out on natural convection in enclosures. For instance, Altaç 

and Uğurlubilek (2016) investigated unsteady natural convection heat transfer in 2D and 3D 

rectangular enclosures using a numerical method. In the study, the rectangular enclosures are 

heated and cooled from opposing isothermal walls that are vertical to each other and the other side 

walls of the rectangular enclosure were assumed to be adiabatic and smooth. Further, the fluid 

used in the study is air and the flow considered is turbulent. Commercial software called FLUENT 

6.3.26 was used in solving 2D and 3D continuity equation in the unsteady state, Reynolds-Average 

Navier-Stokes (RANS), as well as the averaged energy equation. The standard K-ε, Re-

Normalization Group k-ε, Realizable k-ε, Reynolds Stress Model, standard k-ω, and the shear 

stress transport k- ω models were used. Precisely, the performance of turbulence models on heat 

transfer rates was investigated for 2D and square enclosures and for 3 dimension rectangular 

enclosures with the slenderness ratio of 1 and 10 respectively. The assessment of heat transfer rates 

is done by the surface averaged mean Nusselts numbers over the wall that is hot and empirical 

power-law correlations are deduced. It is noted that identical Nusselt number prediction up to 

Ra=1010 are derived for 3D laminar and RANS models. There are no accurate predictions for the 

case of a 2D RANS models when there are large Rayleigh numbers. Further, it is concluded that 

accurate mean Nusselt numbers are yielded from 3D RANS models.  

Khanal and Lei (2015) carried out a numerical investigation of the buoyancy induced a turbulent 

air flow in an inclined passive wall solar chimney that was attached to a room. k- ε model was 

employed in modeling the air turbulence in the solar chimney system. The investigation is carried 

out over the Rayleigh number range of 1.36×1013≤ 1.36×1016 and the angle of inclination is 

between 0o and 6o. The result in the study by Khanal and Lei (2015) indicates that there is a 

decrease in the amount of turbulent kinetic energy and turbulent intensity in the solar chimney 

with the increase in the angle of inclination. 
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Sajjadi and Kefayati (2015) undertook a Lattice Boltzmann simulation of turbulent natural 

convection with large eddy simulations in tall enclosures that are filled with air (Pr=0.71). High 

Rayleigh numbers ranging from 107 and 109 and an aspect ratio change between 0.5 and 2 are used 

in performing the calculations. The authors concluded that the average Nusselt number increases 

with the augmentation of Rayleigh numbers leading to a declination in the heat transfer in varying 

aspect ratios.  

Zimmermann and Groll (2014) undertook a numerical study on turbulent natural convection that 

had large eddy simulation. In the study, the acceleration in natural convection is driven by the 

differences in local densities and the pressure gradient. The increase in temperature gradients is 

used in determining the temperature distribution in the heated walls. In the numerical model, the 

study considered the change in density to occur due to change temperature difference. The study 

made a comparison of the numerical results with the data from an experimental setup. It was noted 

that the temperature and the velocity showed an asymmetry as a result of the non-Boussinesq 

effects of the fluid. In the study, a recommendation for the study of an incompressible turbulent 

model simulation is made. 

3.0 METHODOLOGY 

The study considered the equations governing a free convection. Precisely, the equations governed 

a Newtonian fluid that experiences transfer of heat or mass. The governing equations were derived 

from the conservation principles namely the conservation of mass, the conservation of momentum, 

and the conservation of energy. These equations were decomposed using the Reynolds 

decomposition then the decomposed equations were non-dimensionalized and reduced using the 

Boussinesq assumptions. The k-ε model was employed in the simulation of flow characteristics. 

Finally, the equations were solved numerically for the flow quantities. 

3.1 Model Description 

In this project we will carry out a numerical investigation of turbulent natural convection in 3-

dimension. The geometry of the problem is as illustrated in Figure 1 below. The heating of the 

rectangular enclosure is done on the face-wall. The lower part of the wall is heated (painted red) 

while the upper half is cooled. The Ampofo and Karayiannis (2003) measurements were used 

because they carried out the experiment under high accuracy. Precisely, the walls of the rectangular 

enclosure measure 0.75m by 0.75m by 1.5m wide. The cold and the hot parts of the enclosure were 

isothermal at 323k and 283k respectively. This gives a Rayleigh number of 1.58 × 109. All the 

boundaries of the rectangular enclosure are rigid, non-permeable, has no slip. The other walls of 

the enclosure are adiabatic. 
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Figure 1: Geometry of the Model  

The Boussinesq approximation helped in reducing the governing equations further in this research. 

In this project, we will zero in on the  𝑘 − 𝜀 model and the study of variables as used by Ampofo 

& Karayiannis, 2003). 

3.2 Boussinesq Approximation  

This is a useful approximation for natural convection or in buoyancy-driven flows in enclosures.  

3.3 Simplification of Governing Equations Using Boussinesq Approximation  

The variation of density is proportional to temperature and the change is small. This can be shown 

as follows; 

𝜌 = 𝜌𝑜 + (𝑇 + 𝑇) (
𝜕𝜌

𝜕𝑇
)
𝑇𝑜

              (4.1) 

At a constant pressure the coefficient of thermal expansion is given as; 

𝛽𝑜 =
−1

𝜌𝑜
(
𝜕𝜌

𝜕𝑇
)
𝑇𝑜

               (4.2) 

On substituting equation (4.2) into equation (4.1) we get; 

From (4.1) (
𝜕𝜌

𝜕𝑇
)
𝑇𝑜

=
(𝜌−𝜌𝑜)

𝑇−𝑇𝑜
 and 

 From 4.2 (
𝜕𝜌

𝜕𝑇
)
𝑇𝑜

= −𝜌𝑜𝛽𝑜 

𝜌 = 𝜌𝑜(1 − 𝛽𝑜(𝑇 − 𝑇𝑜))             (4.3) 

By making use of Boussinesq approximation and equation (4.3) in the governing equations, the 

presentation of non-dimensional form for an incompressible flow equations that govern natural 

convection in an enclosure is as follows;  

The continuity equation (3.46) becomes; 

𝜕𝑈𝑗

𝜕𝑥𝑗
= 0             (4.4) 

The momentum equation (3.47) becomes 

𝜕𝑈𝑗

𝜕𝑡
+

𝜕𝑈𝑖𝑈𝑗

𝜕𝑥𝑗
=

𝐴1

𝜌𝑜

𝜕𝑝

𝜕𝑥𝑖
− 𝐴2Θ𝑔𝑖 +

𝜕

𝜕𝑥𝑗
(𝐴3 (

𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
) −  𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̅ )      (4.5) 
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Where 𝐴2 = (𝐴2)𝑜𝑙𝑑𝛽𝑜Δ𝑇∗ and the (𝐴2)𝑜𝑙𝑑 is given in table (3.1) 

The energy equation (3.48) becomes; 

𝜕Θ

𝜕𝑡
+

𝜕𝑈𝑗

𝜕𝑥𝑗
Θ =

𝜕

𝜕𝑥𝑗
(𝐵2

𝜕Θ

𝜕𝑥𝑗
− 𝑢𝑗𝜃̅̅ ̅̅ )          (4.6) 

The turbulent kinetic energy equation (3.49) simplifies to;  

𝜕𝑘

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
𝑈𝑗𝑘 = 𝐸1𝑢𝑗

𝜕

𝜕𝑥𝑗
𝑣 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
−

𝜕

𝜕𝑥𝑗
𝑢𝑗 (

𝑢𝑖𝑢𝑗

2
+

𝑝

𝜌
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
− 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅

𝜕𝑈𝑖

𝜕𝑥𝑗
+ 𝐸2𝜌𝑢𝑖̅̅ ̅̅̅

𝑔𝑖

𝜌
  

Or 

𝜕𝑘

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
𝑈𝑗𝑘 = 𝐸1𝑢𝑗

𝜕

𝜕𝑥𝑗
𝑣 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
−

𝜕

𝜕𝑥𝑗
𝑢𝑗 (

𝑢𝑖𝑢𝑗

2
+

𝑝

𝜌
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
− 𝑃𝑘 + 𝐺𝑘        (4.7) 

Where  

𝑃𝑘 = 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅
𝜕𝑈𝑖

𝜕𝑥𝑗
  , 𝐺𝑘 = 𝜌𝑢𝑖̅̅ ̅̅̅

𝑔𝑖

𝜌
           (4.8) 

The specific dissipation equation given by equation (3.50) simplifies to; 

𝜕𝜀

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
𝑈𝑗𝜀 = −

𝜕

𝜕𝑥𝑘
(𝐹1𝑣𝑢𝑘

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑘

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
+ 𝐹2𝑣

𝜕𝑢𝑘

𝜕𝑥𝑖

𝜕𝑝

𝜕𝑥𝑖

̅̅ ̅̅ ̅̅ ̅̅
− 𝐹1𝑣

𝜕𝜀

𝜕𝑥𝑘
) − 2𝐹1𝑣

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑘

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
−

2𝐹3 (𝑣
𝜕2𝑢𝑖

𝜕𝑥𝑘𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
)
2

+ 2𝐹4
𝑣

𝜌

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑝

𝜕𝑥𝑖
𝑔𝑖 − 2𝐹1𝑣

𝜕𝑢𝑖

𝜕𝑥𝑘
(
𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑘

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅
+

𝜕𝑢𝑗

𝜕𝑥𝑖

𝜕𝑢𝑗

𝜕𝑥𝑘

̅̅ ̅̅ ̅̅ ̅̅
) − 2𝐹1𝑣

𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑘
𝑈𝑘

𝜕𝑢𝑖

𝜕𝑥𝑗
   (4.9) 

In this case the density is neglected everywhere except in the instance that it causes buoyancy 

forces. For instance, in equation (4.8) the density is not neglected in 𝐺𝑘 because it causes buoyancy 

forces hence have a contribution to the generation of notation as argued by Gatheri et al. (1993).  

In these equations the turbulent stress and the heat flux given by 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅  and  𝑢𝑗𝜃̅̅ ̅̅  respectively are 

given by; 

𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ =
2

3
𝑘𝛿𝑖𝑗 − 𝑉𝑡𝜏𝑖𝑗     

Or 

   𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̅ =
2

3
𝑘𝛿𝑖𝑗 − 𝑣𝑡 (

𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
)          (4.10) 

 And  

 𝑢𝑗𝜃̅̅ ̅̅ = −
𝑉𝑡

𝜎𝑇

𝜕Θ

𝜕𝑥𝑗
             (4.11) 

𝑉𝑡   In equation (4.10) and (4.11) in the  𝑘 − 𝜀 model is given as  

𝑉𝑡 = 𝑐𝜇
𝑘2

𝜀
             (4.12) 

3.4 Eliminating the Pressure Term in the Momentum Equation  

The primitive variables in the momentum equation (4.5) are the velocity and the pressure. The 

equation has been written in velocity pressure formulation and has three velocity components and 
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one pressure component that needs to be solved. The numerical solution of the primitive 

formulation is possible but there is a challenge in handling the pressure term. For instance, it could 

bring a challenge in using the same orders of interpolation for both the velocity and pressure. In 

this project we will use vorticity stream function approach in eliminating the pressure term.  

3.4.1 Vorticity Stream function formulation 

Equations (4.4) and (4.5) are the non-dimensional forms of the continuity and the momentum 

equation and may be written in Cartesian coordinate for two dimensional flow to arrive at an 

accurate formulation of the wall vorticity 𝜉 obtained by Wood (1954) and given as; 

𝜉𝑏 =
3𝜓𝑏+1−𝜓𝑏

(Δ𝑛)2
−

1

2
𝜉𝑏+1          (4.19) 

In this equation, b+1 indicates the position that is one mesh point away from the boundary and 

gives an assumption that there is a linear variation of the vorticity in the interval. However, when 

this direct approach is used, the boundary conditions will be complicated for one to solve the 

Navier-stokes equations.  

3.4.2 The vector potential formulation for three dimension flow 

The vorticity stream function formulation is suited for two dimensional flow problems due to the 

fact that the stream function does not exist in three dimension and hence it cannot be extended to 

three dimension. However, a vector potential given as   𝜓 = �⃗� = 𝑈𝑖
⃗⃗  ⃗ + 𝑉𝑗⃗⃗ + 𝑊𝑘

⃗⃗ ⃗⃗  ⃗  exist for 

solenoidal vector field. Nonetheless, the analogy has not been used much because the equations to 

be solved does not reduce as expected but instead increase. In addition, the understanding of the 

boundary conditions is difficult.  

In this account, the implementation has only been restricted to the simple cases where the region 

is closed and connected. As aforementioned the advantage of making use of the vector potential 

formulation is the there is an automatic satisfaction of the continuity equation. One of the 

application of vector potential formulation was carried out by Hiroyuki et al. (1985) in the study 

of three dimensional enclosure in which one of the vertical walls was cooled and heated on the 

floor. In the study, Hiroyuki et al. (1985) considered the range of the Rayleigh was 106 and 107. 

The vector potential given by   𝜓 is defined as  𝑈 = ∇ × 𝜓 and when this is assumed to be 

solenoidal we will have  ∇. 𝜓 = 0. By making use of this definition one can get the velocity 

components in terms of the stream function as;  

𝑈 =
𝜕𝜓3

𝜕𝑦
−

𝜕𝜓2

𝜕𝑧
, 𝑉 = −(

𝜕𝜓3

𝜕𝑥
−

𝜕𝜓1

𝜕𝑧
),  𝑊 =

𝜕𝜓2

𝜕𝑥
−

𝜕𝜓1

𝜕𝑦
     (4.20) 

The relation of vorticity and the stream function is given as; 

ξ = −∇2𝜓            (4.21) 

This can be used in the derivation of the vorticity in three dimension to get the following; 

𝜕2𝜓1

𝜕𝑥2 +
𝜕2𝜓1

𝜕𝑦2 +
𝜕2𝜓1

𝜕𝑧2 = −ξ1,  
𝜕2𝜓2

𝜕𝑥2 +
𝜕2𝜓2

𝜕𝑦2 +
𝜕2𝜓2

𝜕𝑧2 = −ξ2, 
𝜕2𝜓3

𝜕𝑥2 +
𝜕2𝜓3

𝜕𝑦2 +
𝜕2𝜓3

𝜕𝑧2 = −ξ1  (4.22) 

On recasting the momentum equation into a vorticity vector potential one can overcome the 

problem that is seen in the use of primitive variables, pressure and the need for solving the 

continuity equation. The three components of the vorticity vector  ξ  are; 
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ξ1 =
𝜕𝑊

𝜕𝑦
−

𝜕𝑉

𝜕𝑧
,    ξ2 = −(

𝜕𝑊

𝜕𝑥
−

𝜕𝑈

𝜕𝑧
) ,    ξ3 =

𝜕𝑉

𝜕𝑥
−

𝜕𝑈

𝜕𝑦
      (4.23) 

The vorticity transport equation can be obtained by taking the curl of the momentum equation (4.5) 

as affirmed by Ozoe et al. (1976) and hence one will get the transport equation in component form 

as; 

𝜕𝜉1

𝜕𝑡
+ 𝑈

𝜕𝜉1

𝜕𝑥
+ 𝑉

𝜕𝜉1

𝜕𝑦
+ 𝑊

𝜕𝜉1

𝜕𝑧
− 𝜉1

𝜕𝑈

𝜕𝑥
− 𝜉2

𝜕𝑈

𝜕𝑦
− 𝜉3

𝜕𝑈

𝜕𝑧
= (𝐴3 + 𝑣𝑡)∇

2𝜉1 +
𝜕𝑣𝑡

𝜕𝑥

𝜕𝜉1

𝜕𝑥
+ 2

𝜕𝑣𝑡

𝜕𝑦

𝜕𝜉1

𝜕𝑦
+

𝜕𝑣𝑡

𝜕𝑧

𝜕𝜉1

𝜕𝑧
−

𝜕𝑣𝑡

𝜕𝑦

𝜕𝜉2

𝜕𝑥
−

𝜕𝑣𝑡

𝜕𝑧

𝜕𝜉3

𝜕𝑥
− (

𝜕2𝑣𝑡

𝜕𝑦2 +
𝜕2𝑣𝑡

𝜕𝑧2 ) 𝜉1 +
𝜕2𝑣𝑡

𝜕𝑥𝜕𝑦
𝜉2 +

𝜕2𝑣𝑡

𝜕𝑥𝜕𝑧
𝜉3 +  2 [

𝜕2𝑣𝑡

𝜕𝑥𝜕𝑦

𝜕𝑊

𝜕𝑥
+

𝜕2𝑣𝑡

𝜕𝑦2 +
𝜕2𝑣𝑡

𝜕𝑦2

𝜕𝑊

𝜕𝑦
+

𝜕2𝑣𝑡

𝜕𝑦𝜕𝑧

𝜕𝑊

𝜕𝑧
− (

𝜕2𝑣𝑡

𝜕𝑥𝜕𝑧

𝜕𝑉

𝜕𝑥
+

𝜕2𝑣𝑡

𝜕𝑦𝜕𝑥

𝜕𝑉

𝜕𝑦
+

𝜕2𝑣𝑡

𝜕𝑧2

𝜕𝑉

𝜕𝑧
)]          (4.24) 

𝜕𝜉2

𝜕𝑡
+ 𝑈

𝜕𝜉2

𝜕𝑥
+ 𝑉

𝜕𝜉2

𝜕𝑦
+ 𝑊

𝜕𝜉2

𝜕𝑧
− 𝜉1

𝜕𝑉

𝜕𝑥
− 𝜉2

𝜕𝑉

𝜕𝑦
−𝜉3

𝜕𝑉

𝜕𝑧
= (𝐴3 + 𝑣𝑡)∇

2𝜉2 + 2
𝜕𝑣𝑡

𝜕𝑥

𝜕𝜉2

𝜕𝑥
+

𝜕𝑣𝑡

𝜕𝑦

𝜕𝜉2

𝜕𝑦
+

2
𝜕𝑣𝑡

𝜕𝑧

𝜕𝜉2

𝜕𝑧
−

𝜕𝑣𝑡

𝜕𝑥

𝜕𝜉1

𝜕𝑦
−

𝜕𝑣𝑡

𝜕𝑧

𝜕𝜉3

𝜕𝑦
− (

𝜕2𝑣𝑡

𝜕𝑥2 +
𝜕2𝑣𝑡

𝜕𝑧2 ) 𝜉2 +
𝜕2𝑣𝑡

𝜕𝑥𝜕𝑦
𝜉1 +

𝜕2𝑣𝑡

𝜕𝑦𝜕𝑧
𝜉3 − 𝐴3

𝜕Θ

𝜕𝑧
+ 2 [

𝜕2𝑣𝑡

𝜕𝑥𝜕𝑧

𝜕𝑈

𝜕𝑥
+

𝜕2𝑣𝑡

𝜕𝑦𝜕𝑧

𝜕𝑊

𝜕𝑦
+

𝜕2𝑣𝑡

𝜕𝑧2

𝜕𝑈

𝜕𝑧
− (

𝜕2𝑣𝑡

𝜕𝑥2

𝜕𝑊

𝜕𝑥
+

𝜕2𝑣𝑡

𝜕𝑥𝜕𝑦

𝜕𝑊

𝜕𝑦
+

𝜕2𝑣𝑡

𝜕𝑥𝜕𝑧

𝜕𝑊

𝜕𝑧
)]       (4.25) 

𝜕𝜉3

𝜕𝑡
+ 𝑈

𝜕𝜉3

𝜕𝑥
+ 𝑉

𝜕𝜉3

𝜕𝑦
+ 𝑊

𝜕𝜉3

𝜕𝑧
− 𝜉1

𝜕𝑊

𝜕𝑥
− 𝜉2

𝜕𝑊

𝜕𝑦
−𝜉3

𝜕𝑊

𝜕𝑧
= (𝐴3 + 𝑣𝑡)∇

2𝜉3 + 2
𝜕𝑣𝑡

𝜕𝑥

𝜕𝜉3

𝜕𝑥
+ 2

𝜕𝑣𝑡

𝜕𝑦

𝜕𝜉3

𝜕𝑦
+

𝜕𝑣𝑡

𝜕𝑧

𝜕𝜉3

𝜕𝑧
−

𝜕𝑣𝑡

𝜕𝑥

𝜕𝜉1

𝜕𝑧
−

𝜕𝑣𝑡

𝜕𝑦

𝜕𝜉2

𝜕𝑧
− (

𝜕2𝑣𝑡

𝜕𝑥2 +
𝜕2𝑣𝑡

𝜕𝑦2) 𝜉3 +
𝜕2𝑣𝑡

𝜕𝑥𝜕𝑧
𝜉1 +

𝜕2𝑣𝑡

𝜕𝑦𝜕𝑧
𝜉2 − 𝐴2

𝜕Θ

𝜕𝑦
+ 2 [

𝜕2𝑣𝑡

𝜕𝑥2

𝜕𝑉

𝜕𝑥
+

𝜕2𝑣𝑡

𝜕𝑥𝜕𝑦

𝜕𝑉

𝜕𝑦
+

𝜕2𝑣𝑡

𝜕𝑥𝜕𝑧

𝜕𝑉

𝜕𝑧
− (

𝜕2𝑣𝑡

𝜕𝑥𝜕𝑦

𝜕𝑈

𝜕𝑥
+

𝜕2𝑣𝑡

𝜕𝑦2

𝜕𝑈

𝜕𝑦
+

𝜕2𝑣𝑡

𝜕𝑦𝜕𝑧

𝜕𝑈

𝜕𝑧
)]        (4.26) 

The continuity and the momentum equations given by equations (4.4) and (4.5) are replaced by 

the vorticity transport equations (4.24), (4.25), and (4.26) and equation (4.22). 

The variables that are to be solved in this equations are  𝜉1,𝜉2 , 𝜉3  , U, V, W,  Θ , k, and  𝜀. The 

variables are obtained by solving equations (4.24), (4.25), and (4.26) for   𝜉1,𝜉2 , 𝜉3  respectively, 

and U, V, W will be obtained by solving equation (4.20) while k and  𝜀 will be obtained by using 

the turbulent energy equations derived by Ince and Launde (1989) and given as follows;  

𝜕𝑘

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
𝑈𝑗𝑘 = 𝑣𝑡 (

𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
)

𝜕𝑈𝑖

𝜕𝑥𝑗
− 𝜀

𝜕

𝜕𝑥𝑗
[(𝐸2 +

𝑣𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
] − 𝐸2𝑔𝑖𝑈𝑖𝜃̅̅̅̅̅    (4.27) 

𝜕�̅�

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
𝑈𝑗𝜀̅ = 𝐶𝜀1

�̅�

𝑘
𝑣𝑡 (

𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
)

𝜕𝑈𝑖

𝜕𝑥𝑗
− 𝐶𝜀2

�̅�2

𝑘
+ 2𝐹1

2𝑣𝑡 (
𝜕2𝑈𝑗

𝜕𝑥𝑗𝜕𝑥𝑘
)
2

+
𝜕

𝜕𝑥𝑗
[(𝐹1 +

𝑣𝑡

𝜎𝜀
)

𝜕�̅�

𝜕𝑥𝑖
] +

𝐹4𝑔𝑖𝑈𝑖𝜃̅̅̅̅̅ �̅�

𝑘
+ 0.83 (

𝑘
3
2

�̅�𝐶1𝑥𝑛
− 1)

2
�̅�2

𝑘
        (4.28) 

In this equations  �̅� in equation (4.28) is related to the total dissipation ε by the relation;  

𝜀 = 𝜀̅ + 𝐷            (4.29) 

𝐷 = 2𝑣 (
𝜕𝑘

1
2

𝜕𝑥𝑗
)

2

 is the extra rate of destruction in the wall region and far from solid boundary we 

have 𝜀 = 𝜀 ̅because D approaches zero as one goes away from the solid boundary. The empirical 

coefficient in the study by Launder and Sharma (1974) are given as;  
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𝐶𝜀1 = 1.44,  𝐶𝜀2 = 1.92[1 − 0.3𝑒𝑥𝑝(−𝑅𝑡
2)], 𝑅𝑡 =

𝑘2

𝐹1𝜀2
, 𝜎𝑘 = 1.0, 𝜎𝜀 = 1.3     (4.30) 

3.5 Boundary Conditions  

3.5.1 Temperature Boundary Conditions 

As defined earlier the non-dimensional temperature was given as Θ =
(𝑇−𝑇∗)

∆𝑇∗
 , whereby ∆𝑇∗ is the 

characteristic temperature difference between the cold and the hot surfaces that is  ∆𝑇∗ = 𝑇ℎ𝑜𝑡 −
𝑇𝑐𝑜𝑙𝑑. The choice of  Θ is such that it is bounded between 0 and 1. The isothermal and adiabatic 

boundary conditions are sued. These conditions are given as 

 Θ = constant and  
𝜕Θ

𝜕𝜂
= 0          (4.31) 

Respectively where 𝜂 represents the direction of the wall. Since the problem at hand involves 

heating on the lower part of the face wall and heating on the upper part of the face wall, the other 

five walls of the enclosure are kept adiabatic. The Dirichlet boundary conditions are used on the 

hot part of the wall and the cold part of the wall whereby Θℎ𝑜𝑡 = 1 and  Θ𝑐𝑜𝑙𝑑 = 0 are used. On 

the adiabatic walls, the Neumann boundary condition is used. For each of the adiabatic walls 
𝜕Θ

𝜕𝜂
=

0 is used. For instance, in the x-y plane  
𝜕Θ

𝜕𝜂
= 0.  

In the study, the results were obtained for difference Rayleigh numbers and the calculation of the 

Rayleigh number is carried out as indicated in the formula below; 

𝑅𝑎 =
𝑔𝛽∆𝜌𝐿3

𝜇𝛼
=

𝑔𝛽∆𝑇𝐿3

𝑣𝛼
            (4.32) 

Where g is the acceleration due to gravity (-9.81) 

  𝜌 is the density 

  𝜇  is the dynamic viscosity 

𝛽 is the volume of thermal expansively 

 ∆𝑇 the difference in temperature between the hot and the cold walls 

𝑣 is the kinematic viscosity,  

𝐿 is the characteristic length, and  

𝛼 is the thermal diffusivity  

The temperature of the Bottom (hot) wall is kept constant at 313K while the temperature of the top 

(cold) wall is kept constant at 293K. The aspect ratio is kept constant at 1 and the dimensions of 

the enclosure are varied for the change in the Rayleigh number. The dimension of the enclosure 

are 1m by 1 m, 2m by 2m, 4m by 4m, and 18m by 18m to get the Rayleigh numbers of 1.797 ×
109, 1.437 × 10, 1.150 × 1011, and 1.048 × 13 respectively. The operating temperature of the 

enclosure is 303K and the other four walls are kept adiabatic (completely insulated). 
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3.5.2 Velocity Boundary Conditions 

Typically, the conditions in the boundary for a fluid that is in motion depends on the velocity of 

the fluid. In this case, the boundary conditions that have been used are of no-slip and hence the 

fluid will have zero velocity in relation to the boundary. In addition, the normal components of 

velocity at each boundary is zero due to the fact that for a closed cavity the boundary is considered 

to be impermeable and hence it is capable of motion in its own place only.  

3.5.3 Vector Potential Boundary Conditions 

In the no-slip boundary, it is difficult to determine the boundary conditions because the 

components of  𝜓 are not always zero. Only the components that are tangential and those that are 

normal derivatives are zero. For instance, for the case of the wall along the y-z plane we have 
𝜕𝜓1

𝜕𝑥
= 0,𝜓2 = 𝜓3 = 0 at x=0. 

Along the x-z plane, 
𝜕𝜓2

𝜕𝑦
= 0, 𝜓1 = 𝜓3 = 0  at y=0 

And along x-y plane, 
𝜕𝜓3

𝜕𝑧
= 0,𝜓1 = 𝜓2 = 0  and z=0. 

3.5.4 Vorticity Boundary Conditions  

The vorticity boundary conditions are obtained from equation (4.21). The vorticity components 

for the no-slip can be expressed using the fundamental velocities as in equation (4.23). For the 

wall along y-z, we have 
𝜕𝑊

𝜕𝑦
=

𝜕𝑉

𝜕𝑧
=

𝜕𝑈

𝜕𝑧
=

𝜕𝑈

𝜕𝑦
= 0   using the right hand rule and hence the boundary 

condition will be given as ξ1 = 0, ξ2 = −
𝜕𝑊

𝜕𝑥
, ξ3 =

𝜕𝑉

𝜕𝑥
.   

For the wall along x-y we have  
𝜕𝑈

𝜕𝑦
=

𝜕𝑉

𝜕𝑥
=

𝜕𝑊

𝜕𝑥
=

𝜕𝑊

𝜕𝑦
= 0. this will give the boundary condition as, 

ξ1 = −
𝜕𝑉

𝜕𝑧
, ξ2 =

𝜕𝑈

𝜕𝑧
, ξ3 = 0  

Along x-z wall we have  
𝜕𝑊

𝜕𝑥
=

𝜕𝑈

𝜕𝑧
=

𝜕𝑉

𝜕𝑧
=

𝜕𝑉

𝜕𝑥
= 0. This will give the boundary condition as  

ξ1 =
𝜕𝑊

𝜕𝑦
, ξ2 = 0, ξ3 = −

𝜕𝑈

𝜕𝑦
  

The equations (4.22), (4.23), (4.24), (4.25), (4.26), (4.27), and (4.28) together with the boundary 

conditions will completely give the mathematical model description for the 𝑘 − 𝜀  model. 

3.6 Numerical Methods 

The coupled non-linear differential equations with the boundary conditions are to be solved using 

the finite difference technique. In this technique, the partial differential equations are to be 

approximated using a set of linear equations that are related to the values of the functions at specific 

mesh points and thereafter the set of algebraic equations that are formed are to be solved. The non-

linearity of the differential equations necessitate for the development of an iteration procedure and 

hence calling for the use of the false transient method. 
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4.0 RESULTS AND DISCUSSION  

4.1 Distribution of Streamlines 

The path that is traced by a massless particle as it moves with the flow is referred to as the 

streamline. These are tangent lines to the velocity of flow and are designed to minimize the 

resistance of flow in the fluid such as air. The results of this study are obtained for Rayleigh 

numbers ranging from  1.797 × 109 and  1.048 × 1013. Figures 6.1 (a), (b), (c), and (d) shows the 

distribution of streamlines. In figure 6.1 (a), there are two circulating vortices. In this case, a vortex 

is considered to be a whirling fluid motion. With the increase in the Rayleigh number, it is seen 

that there is an increase in the number of vortices and stream functions. In addition, the increase 

in the Rayleigh number causes an increase in the velocity with the maximum velocity in the 

streamlines for b, c, and d below being 2.51 × 10−1𝐾𝑔/𝑠 ,  3.50 × 10−1 𝐾𝑔/𝑠 and,   4.35 ×
10−1𝐾𝑔/𝑠  as it can be seen in the figures below.  The movement of the streamlines is seen to be 

from the bottom wall (hot) and down from the top (cold) wall. This observation is in line with the 

principle of heat transfer. The increase in the Rayleigh number causes an increase in buoyancy 

forces and hence increase the size of the vortices as well as the strength of the stream function.  

 

𝑅𝑎 = 1.797 × 109 

 

𝑅𝑎 = 1.437 × 1010 
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𝑅𝑎 = 1.150 × 1011 

 

𝑅𝑎 = 1.048 × 1013 

Figure 2. Contours of Stream function (Kg/s) 

4.2 Contours of Velocity magnitudes  

The representation of the contours of velocity magnitudes are shown in Figure 6.2 (a), (b), (c), and 

(d). With the increase in the Rayleigh number it can be seen that there is an increase in the number 

of vortices. In addition, the increase in the Rayleigh number results in the increase in the number 

of streamlines in the bottom (hot) wall. Furthermore, it can be observed that there is an increase in 

turbulence with the increase in the Rayleigh number because the flow becomes more chaotic with 

the increase in the Rayleigh number leading to an increase in the velocity magnitude with the 

minimum velocity magnitude being recorded to be  6.48 × 10−1 𝑚/𝑠  as in figure 6.2 (a) and the 

maximum velocity being 1.30 × 100 𝑚/𝑠  in figure 6.2 (a). These is shown in the figures below.  
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𝑅𝑎 = 1.797 × 109 

 

𝑅𝑎 = 1.437 × 1010 

 

𝑅𝑎 = 1.150 × 1011 
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𝑅𝑎 = 1.048 × 1013 

Figure 3: Contours of Velocity Magnitude (m/s) 

4.3 Distribution of Isotherms  

An isotherm is a line on a map or a graph connecting parts that have equal temperatures and every 

given time. Simultaneous temperature readings in different locations help in the creation of 

isotherms. The contours of the isotherms for difference Rayleigh numbers are represented in the 

figures 6.3 (a), (b), (c), and (d). The increase in Rayleigh number results in the enlargement and 

rise of the contours of temperature from the bottom wall with the highest temperature being at the 

middle part of the face. The temperature with the increase in the Rayleigh number decreases with 

the maximum temperatures for a, b, c, and d below being indicated as  2.99 × 102  , 2.99 × 102  , 
2.96 × 102   , and  2.23 × 102 . Additionally, the number of contours of temperature near the 

bottom (hot) wall are more and reduce towards the top wall. The transfer of heat through the fluid 

(air in this case) in the enclosure starts at the bottom wall to the other parts of the enclosure.  

 

a. 𝑅𝑎 = 1.797 × 109 
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b. 𝑅𝑎 = 1.437 × 1010 

 

c. 𝑅𝑎 = 1.150 × 1011 

 

d. 𝑅𝑎 = 1.048 × 1013 

Figure 4: contours of isotherms (K) 
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5.0 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

5.1 Summary 

The results are presented in form of isotherms and vector potentials in different sections of the 

enclosure. The results of the study indicate that the variation of the Rayleigh number affects the 

flow properties such as the velocity and temperature. Specifically, it is found that the increase in 

the Rayleigh number results in the increase in the velocity magnitude and a decrease in 

temperature. 

5.2 Conclusions 

In this study, the velocity of flow in different parts of the enclosure have been obtained for varying 

Rayleigh numbers. The results indicate that a variation in the Rayleigh number affects the fluid 

properties such as velocity and temperature. As such, the velocity magnitude rises with the increase 

in the Rayleigh number. It is found that an increase in the Rayleigh number results in the increase 

in the size of vortices. In relation to the temperature distribution in different parts of the enclosure, 

it is found that the temperature of the enclosure is higher at the bottom of the enclosure and the 

temperature decreases with the increase in the Rayleigh number. The increase in the Rayleigh 

number as well is seen to results in an increase in the turbulence and hence the flow becomes more 

chaotic. 

5.3 Recommendations 

The determination of flow properties is attained with the change in the dimensions of the enclosure 

and keeping the aspect ratio constant. Furthermore, the bottom wall is heated while the top wall is 

cold and the other four walls are adiabatic. It is recommended that and investigation is carried out 

instances where: one makes use of a difference turbulence model such as the k-ω SST turbulence 

model and observe the fluid properties one carries out an investigation keeping the Rayleigh 

number constant and varying the aspect ratio and the dimensions of the enclosure and where 

investigation of the fluid properties in the enclosure with a heater being introduced at the bottom 

wall and a window at the top wall. 
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