Binary Nematic Liquid Crystals Mixture with Enhanced Electro-Optics Properties for Photonic Applications

Authors

  • Ghada N. Hassanein Taibah University
  • Omaima A. Alhaddad Taibah University
  • Mostafa A. Ellabban Taibah University

DOI:

https://doi.org/10.47604/ajps.2562

Keywords:

Liquid Crystal Mixtures, Nematic, PCH5, 7CB, Amplitude Modulated Electric Signal

Abstract

Purpose: In this work, we mix two simple nematic liquid crystals (NLCs) and investigated the binaryNLCs mixtures of 7CB/PCH5 of different mixing ratios.

Methodology: The pure liquid crystals 7CB and PCH5 and binary mixtures of them of high temperature stability were thermally analyzed by differential scanning calorimetry. The mixture 7CB/PCH5:30/70 wt% has the highest thermal stability with a nematic-isotropic (N-I) transition temperature at 50oC. The electrooptic properties of 7CB, PCH5, and the mixture 7CB/PCH5:30/70 wt% at room temperature were also investigated using an amplitude modulated electric signal (1 kHz - 100 Hz) by increasing diving peak voltage from 0 V to 10 V. The threshold volage is relatively reduced for the binary mixture in comparison to that value for PCH5. In comparison to the pure LCs,  the mixture 7CB/PCH5:30/70 wt% has the fastest response times of values 2.36 ms total time response, 0.41 ms rise time, and 1.95 ms fall time.  It has also the highest contrast ratio.  Moreover, it has a maximum measured transmission that is higher than those for PCH5 and 7CB by about 17 % and 8%, respectively, at a field strength of 2V/mm.

Findings: The obtained results indicate that the electrooptic properties of PCH5 was improved when mixed with a proper ratio of 7CB, of  lower cost, more stablity , and higher potential for photonic applications.

Unique Contriburibution to Theory, Practice and Policy: This expermental study shows that simply  by mixing two relatively low cost NLCs materials, one of high thermal stability  and low electro-optic properties with other one of low thermal stability and better electro-optic properties; this would improve the stability, response, and transmition of the binary mixture. If the a suitable driving method is applied, without doping with other orgnic or inorganic matrial.

Downloads

Download data is not yet available.

References

J.G. An, S. Hina, Y. Yang, M. Xue and Y. Liu, Characterization of liquids crystals: a literature review, Rev. Adv. Mater. Sci., 44, 398-406 (2016).

S.M. Kelly and M. O'Neill, Liquid crystals for electro-optic applications. In Handbook of Advanced Electronic and Photonic Materials and Devices; Academic Press: Cambridge, MA, USA, pp. 1-66 (2001).

B. Bahdur, Liquid crystals- Applications and uses, Vol. 3, World Scinetific Publishing Co. Pte. Ltd., 1992.

M. Fally, I. Drevenšek-Olenik, M.A. Ellabban, K.P. Pranzas and J. Vollbrandt, Colossal light-induced refractive-index modulation of neutrons in holographic polymer-dispersed liquid crystals, Phys. Rev. Lett. 97, 167803 (2006).

M. Fally, M. Bichler, M.A. Ellabban, I Drevenšek-Olenik, C. Pruner, H. Eckerlebe and K.P. Pranzas, Diffraction gratings for neutrons from polymers and holographic polymer-dispersed liquid crystals, J. Opt. A: Pure Appl. Opt.11, 024019 (2009).

R. Mackenzie and A. J. Asbury, Clinical evaluation of liquid crystal skin thermometers, Brit. J. of Anaesthesia, 72, 246-249 (1994).

L. Luo, Y. Liang, Yuting Feng, D. Mo, Y. Zhang and J. Chen, Recent Progress on Preparation Strategies of Liquid Crystal Smart Windows, Cryst., 12, 1426 (2022).

J. Beeckman, K. Neyts, P. J. M. Vanbrabant, Liquid-crystal photonic applications, Opt. Eng., 50, 081202 (2011).

B. Meddeb, H. Ayeb, T. Soltani, A. Guesmi, N.B. Hamadi, and F. Jomni, Phase diagram, dielectric and electro optic properties of binary liquid crystals mixtures, Liq. Cryst., 49, 2155-65 (2022).

D. Yang D, Y. Yin Y, and H. Liu, Nematic-isotropic phase transition of binary liquid crystal mixtures, Liq. Cryst., 34, 605-09 (2007)

A.C. Rauch, S. Garg, and D.T. Jacobs, Phase transitions in a nematic binary mixture, J. Chem. Phys., 116, 2213-18 (2002).

A. Kalbarczyk, N. Bennis, and J. Herman, Electro-Optical and photo stabilization study of nematic ternary mixture, Materials, 14, 2283 (2021).

A. Aouini, M. Nobili, E. Chauveau, P. Dieudonn-George, G. Damême, D. Stoenescu, I. Dozov, and C. Blanc, Chemical-Physical Characterization of a Binary Mixture of a Twist Bend Nematic Liquid Crystal with a Smectogen, Cryst., 10, 1110 (2020).

L.A. Kaszczuk, G.J. Bertolini, J.F. Johnson, and A.C. Griffin, Thermal properties of binary mixtures of liquid crystals. A review, Mol. Cryst. Liq. Crylt.. 88, 183-243 (1982).

M. Chaudhary, and D. Ghildyal, Investigations of axioms of twist grain boundary phases (TGBPs) in binary mixture of liquid crystals, International Journal of Modern Physics B,38, 2450006 (2024).

N. Farezi, H. Khoshsima, M.S. Zakerhamidi, A. Ranjkesh, and T.H. Yoon, Temperature-dependent characterization of optical parameters in novel high birefringence nematic liquid crystal mixtures: an empirical investigation, Physics Scripta, 99, 025980 (2024).

S. Sundaram, V.N. Vijayakumar, V. Balasubramanian, Electronic and structure conformational analysis (HOMO-LUMO, MEP, NBO, ELF, LOL, AIM) of hydrogen bond binary liquid crystal mixture: DFT/TD-DFT approach, Computational and Theoretical Chemistry, 1217, 113920 (2022).

O.A. Alhaddad, H.A. Ahmed, M. Hagar, G.R. Saad, K.A. Abu Al-Ola, and M.M. Naoum MM, Thermal and Photophysical Studies of Binary Mixtures of Liquid Crystal with Different Geometrical Mesogens, Crystals. 10, 223 (2020).

M. Okumuş, H. Eskalen, M. Sünkür, and Ş. Özgan, Mesogenic properties of PAA/6BA binary liquid crystal complexes, J. of Molecul. Struct., 1178, 428-35 (2019).

M.W. Geis, T.M. Lyszczarz, R.M. Osgood, and B.R. Kimball, 30 to 50 ns liquid-crystal optical switches, Opt. Express, 18, 18886-93 (2010).

G.N. Hassanein, N. Kattan, and M.A. Ellabban, Electro-optic properties of aligned and non-aligned polymer dispersed liquid crystals driven by an amplitude-modulated electric signal, Optik, 186, 137-146, 2019.

G.N. Hassanein, Optimizing low frequency electro-optic response of nematic liquid crystals, Optik, 182, 269-74 (2019).

X. Zhang, X. Liu, X. Zhang, Y. Tian and Y. Meng, Ordering of the 7CB liquid crystal induced by nanoscale confinement and boundary lubrication, Liq. Cryst., 39, 1305-131 (2012).

https://www.sigmaaldrich.com/SA/en/product/aldrich/330817

A. Eich and B. A. Wolf, L. Bennett and S. Hess, Electro- and magneto-rheology of nematic liquid crystals: Experiment and nonequilibrium molecular dynamics computer simulation, J. of Chem. Phys., 113, 3829 (2000)

J. Li, C.H. Wen, S. Gauza, R. Lu, and S. T. Wu, Refractive Indices of Liquid Crystals for Display Applications, Journal of Display Technology,1, 51 (2005).

H. K. Koduru, Electro-optical and dielectric characterization of submicrometer-sized PDLC films, J. Phys.: Conf. Ser. 780 012007 (2017).

A.B. Golovin, S.V. Shiyanovskii, and O.D. Lavrentovich, Fast switching dual-frequency liquid crystal optical retarder, driven by an amplitude and frequency modulated voltage, Appl. Phys. Lett., 83, 3864, (2003).

A. Marino, F. Vita, V. Tkachenko, R. Caputo, C. Umeton, A. Veltri, and G. Abbate, Dynamical behaviour of holographic gratings with a nematic film-Polymer slice sequence structure, Eur. Phys. J. E, 15, 47, (2004).

C.C. Chen, J.J. Liang, W.C. Chiang, W.Y. Lee, and J.S. Lin, Waveform parameters effect on electro"”optic properties of polymer"”dispersed liquid crystal light shutters, SPIE, 1815 Display Technologies, 244-54 (1992).

Y.J. Liu and X.W. Sun, Electrically Tunable Three-Dimensional Holographic Photonic Crystal Made of Polymer-Dispersed Liquid Crystals Using a Single Prism, J. Appl. Phys., 46, 6634, (2007).

G. Nabil, Characterization of polymer dispersed liquid crystal for photonic device applications, Ph.D. thesis (Electronic Engineering Department, City University of Hong Kong, 2012).

Downloads

Published

2024-05-20

How to Cite

Hassanein, G., Alhaddad, O., & Ellabban, M. (2024). Binary Nematic Liquid Crystals Mixture with Enhanced Electro-Optics Properties for Photonic Applications . American Journal of Physical Sciences, 2(1), 26–39. https://doi.org/10.47604/ajps.2562

Issue

Section

Articles