Role of Non-Coding RNAs in Gene Regulation in Brazil
DOI:
https://doi.org/10.47604/ijb.2501Keywords:
Role, Non-Coding RNAs, Gene RegulationAbstract
Purpose: The aim of the study was to examine the role of non-coding RNAs in gene regulation in Brazil
Methodology: This study adopted a desk methodology. A desk study research design is commonly known as secondary data collection. This is basically collecting data from existing resources preferably because of its low cost advantage as compared to a field research. Our current study looked into already published studies and reports as the data was easily accessed through online journals and libraries.
Findings: The study found that non-coding RNAs (ncRNAs) play diverse and pivotal roles in gene regulation across various biological processes. From microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) to circular RNAs (circRNAs) and transfer RNA-derived fragments (tRFs), ncRNAs participate in fine-tuning gene expression at multiple levels, including transcriptional and post-transcriptional regulation. These molecules act as crucial regulators of cellular homeostasis, development and disease pathogenesis.
Unique Contribution to Theory, Practice and Policy: Central dogma of molecular biology & competitive endogenous rna (cerna) hypothesis may be used to anchor future studies on role of non-coding RNAs in gene regulation in Brazil. Leveraging the dysregulated expression of non-coding RNAs as diagnostic and prognostic biomarkers will facilitate the development of personalized therapeutic strategies. By targeting specific non-coding RNAs associated with disease states, clinicians can tailor treatment regimens to individual patients, improving efficacy and minimizing adverse effects. Policymakers should prioritize funding for non-coding RNA research, recognizing its significance in advancing biomedical knowledge and improving healthcare outcomes. Educational institutions and professional organizations should incorporate non-coding RNA biology into undergraduate and graduate curricula, as well as continuing education programs for healthcare professionals.
Downloads
References
Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136(2), 215-233. DOI: 10.1016/j.cell.2009.01.002
Brameier, M., & Herwig, A. (2015). Small nucleolar RNAs in genome stability, cancer and aging. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1859(12), 200-206. DOI: 10.1016/j.bbagrm.2015.09.006
Carrieri, C., Cimatti, L., Biagioli, M., Beugnet, A., Zucchelli, S., Fedele, S., ... & Fasolo, F. (2012). Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature, 491(7424), 454-457. DOI: 10.1038/nature11508
Chen, X., Liang, H., Guan, D., Wang, C., & Hu, X. (2015). Small RNAs in development of applications for improving plant stress tolerance. Plant Biotechnology Reports, 9(3), 179-193. DOI: 10.1007/s11816-015-0359-8
Crick, F. H. (1970). Central dogma of molecular biology. Nature, 227(5258), 561-563. DOI: 10.1038/227561a0
Engel, N., Radek, M., & Giordani, F. (2016). Towards understanding the role of microRNAs in host-pathogen interactions. Communications Biology, 1(1), 1-4. DOI: 10.1038/s42003-016-0012-3
Esteller, M. (2011). Non-coding RNAs in human disease. Nature Reviews Genetics, 12(12), 861-874. DOI: 10.1038/nrg3074
Fatica, A., & Bozzoni, I. (2014). Long non-coding RNAs: new players in cell differentiation and development. Nature Reviews Genetics, 15(1), 7-21. DOI: 10.1038/nrg3606
Hirose, T., & Nakano, T. (2014). Small nucleolar RNAs: versatile trans-acting molecules of ancient evolutionary origin. Gene Expression Patterns, 15(1), 3-7. DOI: 10.1016/j.gep.2014.08.002
Holdt, L. M., Kohlmaier, A., & Teupser, D. (2018). Molecular roles and function of circular RNAs in eukaryotic cells. Cellular and Molecular Life Sciences, 75(6), 1071-1098. DOI: 10.1007/s00018-017-2679-1
Huang, N. S., Chi, Y. Y., Xue, J. Y., Liu, M. Y., Huang, S., Mo, M., ..., & Tan, J. J. (2015). Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 (MALAT1) interacts with estrogen receptor and predicted poor survival in breast cancer. Oncotarget, 7(25), 37957-37965. DOI: 10.18632/oncotarget.7692
Iorio, M. V., & Croce, C. M. (2017). MicroRNA involvement in human cancer. Carcinogenesis, 38(6), 615-619. DOI: 10.1093/carcin/bgx063
Lee, J. T. (2011). Gracefully ageing at 50, X-chromosome inactivation becomes a paradigm for RNA and chromatin control. Nature Reviews Molecular Cell Biology, 12(12), 815-826. DOI: 10.1038/nrm3231
Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., ... & Zhao, W. (2015). Exon-intron circular RNAs regulate transcription in the nucleus. Nature Structural & Molecular Biology, 22(3), 256-264. DOI: 10.1038/nsmb.2959
Ling, H., Fabbri, M., & Calin, G. A. (2013). MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nature Reviews Drug Discovery, 12(11), 847-865. DOI: 10.1038/nrd4140
Mattick, J. S., & Makunin, I. V. (2006). Non-coding RNA. Human Molecular Genetics, 15(Spec No 1), R17-R29. DOI: 10.1093/hmg/ddl046
Oliveira, L. F. V., Christoff, A. P., & Margis, R. (2016). The emerging role of long non-coding RNAs in plant response to biotic and abiotic stresses. Molecular BioSystems, 12(4), 1151-1157. DOI: 10.1039/c5mb00884d
Pamudurti, N. R., Bartok, O., Jens, M., Ashwal-Fluss, R., Stottmeister, C., Ruhe, L., ... & Kadener, S. (2017). Translation of circRNAs. Molecular Cell, 66(1), 9-21. DOI: 10.1016/j.molcel.2017.02.021
Quinn, J. J., & Chang, H. Y. (2016). Unique features of long non-coding RNA biogenesis and function. Nature Reviews Genetics, 17(1), 47-62. DOI: 10.1038/nrg.2015.10
Salmena, L., Poliseno, L., Tay, Y., Kats, L., & Pandolfi, P. P. (2011). A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 146(3), 353-358. DOI: 10.1016/j.cell.2011.07.014
Sarkar, F. H., Choueiri, M. B., & Ahmed, Q. (2016). microRNAs in neurodegenerative diseases: From pathogenesis to potential therapeutic targets. Aging and Disease, 7(4), 256-273. DOI: 10.14336/AD.2016.0130
Smith, R. S., Zhang, Z., & Baulcombe, D. C. (2017). Circular RNAs (circRNAs) in cardiovascular diseases. Journal of Molecular and Cellular Cardiology, 108, 80-85. DOI: 10.1016/j.yjmcc.2017.05.006
Zhang, X. O., Wang, H. B., Zhang, Y., Lu, X., Chen, L. L., & Yang, L. (2014). Complementary sequence-mediated exon circularization. Cell, 159(1), 134-147. DOI: 10.1016/j.cell.2014.09.001
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Joyce Laula
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.