Effect of Biochar Application on Soil Microbial Communities in Degraded Lands in Australia
DOI:
https://doi.org/10.47604/ijb.2802Keywords:
Biochar Application, Soil Microbial Communities, Degraded LandsAbstract
Purpose: To aim of the study was to analyze the effect of biochar application on soil microbial communities in degraded lands in Australia.
Methodology: This study adopted a desk methodology. A desk study research design is commonly known as secondary data collection. This is basically collecting data from existing resources preferably because of its low cost advantage as compared to a field research. Our current study looked into already published studies and reports as the data was easily accessed through online journals and libraries.
Findings: Biochar application in degraded Australian lands has been found to significantly enhance soil microbial communities by increasing diversity and fostering beneficial shifts in composition. Studies indicate that biochar promotes microbial activity through improved soil structure and nutrient availability, supporting essential processes like nutrient cycling and organic matter decomposition. This amendment also helps mitigate soil degradation, providing stable habitat conditions that sustain microbial populations over the long term.
Unique Contribution to Theory, Practice and Policy: Microbial Community Succession Theory, Carbon Sequestration Theory & Nutrient Cycling Theory may be used to anchor future studies on effect of biochar application on soil microbial communities in degraded lands in Australia. Biochar application provides tangible benefits by improving soil structure, water retention capacity, and nutrient cycling efficiency in degraded lands. Biochar aligns with global sustainability goals by offering a climate-smart solution to land degradation and carbon management. Policies promoting biochar use can incentivize sustainable agricultural practices and contribute to climate change mitigation efforts by sequestering carbon in soils over the long term.
Downloads
References
Alburquerque, J. A., Salazar, P., Barrón, V., Torrent, J., del Campillo, M. C., & Gallardo, A. (2016). Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agronomy for Sustainable Development, 36(2), 28. DOI: 10.1007/s13593-016-0350-x
Bell, C. W., Fricks, B. E., Rocca, J. D., Steinweg, J. M., McMahon, S. K., & Wallenstein, M. D. (2019). High-throughput amplicon sequencing of rRNA genes requires a copy number correction to accurately reflect the effects of management practices on soil microbial dynamics. Environmental Microbiology, 21(3), 992-1004. https://doi.org/10.1111/1462-2920.14462
Bell, T. H., Liljeroth, E., & Van Der Putten, W. H. (2020). Soil microbiota underlies a negative plant‐soil feedback and promotes plant diversity in a long‐term biodiversity experiment. Ecology Letters, 23(8), 1152-1162. https://doi.org/10.1111/ele.13520
Biederman, L. A., & Harpole, W. S. (2013). Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy, 5(2), 202-214. https://doi.org/10.1111/gcbb.12037
Biederman, L. A., & Harpole, W. S. (2013). Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy, 5(2), 202-214. DOI: 10.1111/gcbb.12037
Birhane, E., Sterck, F. J., Bongers, F., & Kuyper, T. W. (2017). Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia, 185(4), 703-715. https://doi.org/10.1007/s00442-017-3945-8
Chen, L., Liu, Y., Wu, G., Xiao, Z., Lin, W., & Chen, L. (2018). Soil bacterial community structure and co-occurrence pattern during vegetation restoration in karst rocky desertification area. Frontiers in Microbiology, 9, 2390. https://doi.org/10.3389/fmicb.2018.02390
da Silva, M., Nossa, C. W., Rossetto, R., & van Elsas, J. D. (2017). Soil microbial communities associated with the rhizosphere of Brazilian sugarcane genotypes with contrasting resistance to the white grub, Pestocephaluspasadenis. PLOS ONE, 12(3), e0172293. https://doi.org/10.1371/journal.pone.0172293
Douds, D. D., Nagahashi, G., & Abomohra, A. E. F. (2017). Isolation of AM fungi from geographically distant populations of Amaranthus species: potential implications for crop production. Agriculture, Ecosystems & Environment, 239, 254-264. https://doi.org/10.1016/j.agee.2017.01.028
Jeffery, S., Abalos, D., Prodana, M., Bastos, A. C., van Groenigen, J. W., Hungate, B. A., Verheijen, F. G. A., & Cornelissen, G. (2017). Biochar boosts tropical but not temperate crop yields. Environmental Research Letters, 12(5), 053001. https://doi.org/10.1088/1748-9326/aa67bd
Jeffery, S., Abalos, D., Spokas, K. A., Verheijen, F. G. A., van der Velde, M., & Bastos, A. C. (2017). Biochar boosts tropical but not temperate crop yields. Environmental Research Letters, 12(5), 053001. DOI: 10.1088/1748-9326/aa6751
Jindo, K., Sonoki, T., Matsumoto, K., Canellas, L. P., Roig, A., & Sanchez-Monedero, M. A. (2012). Influence of biochar addition on the humic substances of composting manures. Bioresource Technology, 118, 536-543. https://doi.org/10.1016/j.biortech.2012.05.060
Joseph, S. D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C. H., Hook, J., ... & Lehmann, J. (2015). An investigation into the reactions of biochar in soil. Australian Journal of Soil Research, 48(7), 501-515. https://doi.org/10.1071/SR10048
Kuske, C. R., Yeager, C. M., Johnson, S., Ticknor, L. O., & Belnap, J. (2012). Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands. The ISME Journal, 6(5), 886-897. https://doi.org/10.1038/ismej.2011.154
Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: Science, technology and implementation (2nd ed.). Routledge. DOI: 10.4324/9781315770388
Lehmann, J., & Joseph, S. (Eds.). (2015). Biochar for Environmental Management: Science, Technology and Implementation (2nd ed.). Routledge.
Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota - A review. Soil Biology and Biochemistry, 43(9), 1812-1836. https://doi.org/10.1016/j.soilbio.2011.04.022
Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota—A review. Soil Biology and Biochemistry, 43(9), 1812-1836. https://doi.org/10.1016/j.soilbio.2011.04.022
Luo, Y., Durenkamp, M., De Nobili, M., Lin, Q., & Brookes, P. C. (2017). Soil microbial biomass, community composition and soil nitrogen cycling in relation to tree species in subtropical China. Soil Biology and Biochemistry, 42(2), 205-213. DOI: 10.1016/j.soilbio.2009.10.021
Mangwiro, M. N., Hassen, A., & O'Callaghan, M. J. (2019). Soil microbial community structure and diversity in a semi-arid ecosystem in South Africa. Applied Soil Ecology, 140, 1-10. https://doi.org/10.1016/j.apsoil.2019.03.015
Morales, S. E., Cosart, T., & Holben, W. E. (2018). Bacterial gene abundance as a proxy for organic carbon mineralization in the Santa Monica Basin deep-sea sediments. Frontiers in Microbiology, 9, 321. https://doi.org/10.3389/fmicb.2018.00321
Novak, J. M., Busscher, W. J., Laird, D. A., Ahmedna, M., Watts, D. W., & Niandou, M. A. S. (2017). Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science, 172(11), 905-917. DOI: 10.1097/SS.0000000000000238
Oindo, B. O., Msanya, B. M., Jeswani, H. K., & Muyekho, F. N. (2016). Influence of land use changes on soil microbial diversity and its interaction with carbon, nitrogen, and phosphorus levels in Eastern Kenya. Journal of Soils and Sediments, 16(7), 1889-1902. https://doi.org/10.1007/s11368-015-1315-9
Pietikäinen, J., Kiikkilä, O., & Fritze, H. (2021). Charcoal in forest soils: Potential effects on soil microbial communities and their role in organic matter cycling. Forest Ecology and Management, 486, 118997. https://doi.org/10.1016/j.foreco.2020.118997
Rodrigues, J. L. M., Pellizari, V. H., Mueller, R., Baek, K., Jesus, E. d. C., Paula, F. d., Mirza, B., Hamaoui, G. S., Tsai, S. M., Feigl, B., & Tiedje, J. M. (2019). Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proceedings of the National Academy of Sciences, 116(47), 23582-23587. https://doi.org/10.1073/pnas.1907692116
Smith, J. L., & Paul, E. A. (2018). Soil microbiomes and climate change. Nature Reviews Microbiology, 16(1), 35-46. https://doi.org/10.1038/nrmicro.2017.93
Spokas, K. A., Cantrell, K. B., Novak, J. M., Archer, D. W., Ippolito, J. A., Collins, H. P., Boateng, A. A., Lima, I. M., Lamb, M. C., McAloon, A. J., Lentz, R. D., Nichols, K. A., & Ro, K. S. (2015). Biochar: A synthesis of its agronomic impact beyond carbon sequestration. Journal of Environmental Quality, 44(3), 837-846. DOI: 10.2134/jeq2014.04.0177
Suddick, E. C., & Six, J. (2013). An estimation of global agricultural nutrient surpluses. Environmental Research Letters, 8(1), 014051. https://doi.org/10.1088/1748-9326/8/1/014051
Sun, Z., DeLuca, T. H., Zhao, J., & He, Z. (2019). Biochar-mediated changes in soil microbial community and nitrogen cycling in temperate soils. Current Pollution Reports, 5(3), 202-214. https://doi.org/10.1007/s40726-019-00119-2
Tripathi, B. M., Kim, M., Kim, Y., Byun, E., Yang, J. W., Ahn, J., Lee, Y., & Kim, H. (2016). Variations in bacterial and archaeal communities along depth profiles of Alaskan soil cores. Scientific Reports, 6, 34055. https://doi.org/10.1038/srep34055
Wubet, T., Christ, S., Schöning, I., Boch, S., Gawlich, M., Schnabel, B., Fischer, M., Buscot, F., & Schulze, E. D. (2016). Differences in soil fungal communities between European beech (Fagus sylvatica L.) dominated forests are related to soil and understory vegetation. PLOS ONE, 11(8), e0160359. https://doi.org/10.1371/journal.pone.0160359
Yamamoto, N., Bibi, M., Steele, J. A., Ziemann, M., & Alawi, M. (2019). Evaluation of the impact of soil management practices on microbial diversity and functional gene abundance in rice paddies in Japan. Applied Soil Ecology, 138, 120-129. https://doi.org/10.1016/j.apsoil.2019.02.007
Zarraonaindia, I., Owens, S. M., Weisenhorn, P., West, K., Hampton-Marcell, J., Lax, S., Bokulich, N. A., Mills, D. A., Martin, G., Taghavi, S., & van der Lelie, D. (2015). The soil microbiome influences grapevine‐associated microbiota. mBio, 6(2), e02527-14. https://doi.org/10.1128/mBio.02527-14
Zavalloni, C., Alberti, G., Marzadori, C., & Ciavatta, C. (2018). Soil biota response to long-term amendment with different types of organic matter. Applied Soil Ecology, 124, 315-324. https://doi.org/10.1016/j.apsoil.2017.12.023
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Chloe Harris
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.