SPATIAL-TEMPORAL VARIATION OF GROUNDWATER RECHARGE FROM PRECIPITATION IN THE STONY ATHI SUB-CATCHMENT, KENYA

Authors

  • Morris W. Mathenge Department of Environmental Science: Kenyatta University
  • Dr. Gladys M. Gathuru Department of Environmental Science: Kenyatta University
  • Dr. Esther L. Kitur Department of Environmental Science: Kenyatta University

DOI:

https://doi.org/10.47604/ijes.1079

Keywords:

Groundwater recharge; WetSpass-M; Stony Athi

Abstract

Purpose: Groundwater recharge is an important process for sustainable groundwater development and its quantification is a prerequisite for efficient management of groundwater resources. The purpose of this study was to evaluate the scale and spatial-temporal variation of groundwater recharge from precipitation in the semi-arid Stony Athi sub-catchment.

Methodology: A descriptive case study approach was used for the evaluation. WetSpass-M, a GIS physically based, spatially distributed watershed model was applied. The model integrates biophysical and climatic characteristics of a watershed to simulate the long term mean groundwater recharge. Grid maps of the sub-catchment characteristics were prepared from primary and secondary data using ArcMap. The model was applied for four periods, namely, 1984, 1995, 2005 and 2017. Besides the average groundwater recharge, other outputs of the model include surface run-off and actual evapotranspiration. The study was carried out between January and December 2018.

Findings: Land cover in the Stony Athi sub-catchment is comprised of built-up area, agricultural land, grassland, shrub-land, mixed forest and bare land. Topography ranges from 1493 m to 2,082 m above sea level with a slope of between 0% and 30%. Soil types include sandy loam, loam, sandy clay loam, sandy loam and clay. The mean annual precipitation is about 634 mm while the potential evapotranspiration is about 1,490 mm. Annual temperature averages 19.0°C with a mean maximum of 25°C and a mean minimum of 12.7°C. The results of the simulation indicated that the long-term temporal and spatial average annual rainfall of 634 mm is distributed as 88 mm (14%) recharge, 77 mm (12%) surface runoff while 475 mm (75%) is lost through evapotranspiration.  

Unique contribution to theory, practice and policy: This study demonstrate the importance of physically-based spatially-distributed hydrological models in estimating the water balance. The study provides a theoretical basis for scientific, rational resource allocation and utilization as well as creating awareness of the need to enhance groundwater governance. Results from this study can be used as an input for building an integrated groundwater modelling and for evaluation of potential sites for managed artificial recharge through harvesting runoff to improve groundwater storage.  

Downloads

Download data is not yet available.

Author Biographies

Morris W. Mathenge, Department of Environmental Science: Kenyatta University

PhD Researcher

Dr. Gladys M. Gathuru, Department of Environmental Science: Kenyatta University

Lecturer

Dr. Esther L. Kitur, Department of Environmental Science: Kenyatta University

Lecturer

References

Abdollahi, K., Bashir, I. & Batelaan, O., (2012). WetSpass Graphical User Interface. Version 31-05-2012. Vrije University Brussel, Department of hydrology and hydraulic engineering
Abdollahi, K., Bashir, I., Verbeiren, B., Harouna, M. R., Griensven, A. V., Huysmans, M. & Batelaan, O. (2017). A distributed monthly water balance model: formulation and application on Black Volta Basin. Environmental Earth Science, 76(5)
Abdollahi, K., Bazargan, A., & McKay, G. (2018). Water balance models in environmental modelling. Handbook of Environmental Materials Management, 1-16. https://doi.org/10.1007/978-3-319-58538-3_119-1
Aish, A.M. (2014). Estimation of water balance components in the Gaza Strip with GIS based WetSpass model.2014. Civil and Environmental Research, 6(11). https://www.iiste.org
Albhaisi, M., Brendonck, L., & Batelaan, O. (2013). Predicted impacts of land use change on groundwater recharge of the upper Berg catchment, South Africa. Water SA, 39(2). https://doi: 10.4314/wsa.v39i2.4
Ali, M., & Mubarak, S. (2017). Approaches and methods of quantifying natural groundwater recharge - A Review. Asian Journal of Environment & Ecology, 5(1), 1-27. https://doi.org/10.9734/ajee/2017/36987
Al-Kuisi, M., & El-Naqa, A., (2013). GIS based spatial groundwater recharge estimation in the Jafr basin, Jordan - Application of WetSpass models for arid regions: Revista Mexican de Ciencias Geologicas, 30(1), 96-109
Arefaine, T., Nedaw, D. & Gebreyohannes, T. (2012). Groundwater recharge, evapotranspiration and surface runoff estimation using WetSpass modeling method in Illala Catchment, Northern Ethiopia. Momona Ethiopian Journal of Science, 4(2), 96-110.
Armanuos, A. M., Negm, A., Yoshimura, C., & Valeriano, O. C. (2016). Application of WetSpass model to estimate groundwater recharge variability in the Nile Delta aquifer. Arabian Journal of Geosciences, 9. https://DOI 10.1007/s12517-016-2580-x
Ashaolu, E. D., Olorunfemi, J. F., Ifabiyi, I. P., Abdollahi, K., & Batelaan, O. (2020). Spatial and temporal recharge estimation of the basement complex in Nigeria, West Africa. Journal of Hydrology: Regional Studies, 27. https://doi: 10.1016/j.ejrh.2019.100658
Batelaan, O., & De Smedt, F., (2001). WetSpass: A flexible, GIS based distributed recharge methodology for regional groundwater modelling. In: Gehrels, H., Peters, J., Hoehn, E., Jensen, K., Leibundgut, C., Griffioen, J., Webb, B., & Zaadnoordijk, W-J (eds). Impact of human activity on groundwater dynamics, Publ. no. 269. IAHS, Wallingford, pp 11-17.


Batelaan, O., & De Smedt, F. (2007). GIS-based recharge estimation by coupling surface-subsurface water balances. Journal of Hydrology, 337(3-4), 337-355. https://doi.org/10.1016/j.jhydrol.2007.02.001
Bobadoye, A. O., Ogara, W. O., Ouma, G. O. & Onono, J. O. (2014). Comparative analysis of rainfall trends in different sub-counties in Kajiado County, Kenya. International Journal of Innovative Research & Studies (IJRS), 3(12), 179-195
CIDP, (2018) - Kajiado County Integrated Development Plan, 2018-2022. https://www.kajiado.go.ke
Gebremeskel, G., & Kebede, A. (2017). Spatial estimation of long-term seasonal and annual groundwater resources: application of WetSpass model in the Werii watershed of the Tekeze River Basin, Ethiopia. Physical Geography, 38(4), 338-359. http://doi.org/10.1080/02723646.2017.1302791
Gebreyohannes, T., De Smedt, F., Walraevens, K., Gebresilassie, S., Hussien, A., & Hagos, M., & Gebrehiwot, K. (2013). Application of a spatially distributed water balance model for assessing surface water and groundwater resources in the Geba basin, Tigray, Ethiopia. Journal of Hydrology, 499, 110-123. https://doi: 10.1016/j.jhydrol.2013.06.026
Graf, R., & Przybyłek, J. (2018). Application of the WetSpass simulation model for determining conditions governing the recharge of shallow groundwater in the Poznań Upland, Poland. Geologos, 24(3), 189-205. https://doi: 10.2478/logos-2018-0020
Herrmann, F., Keller, L., Kunkel, R., Vereecken, H., & Wendland, F. (2015). Determination of spatially differentiated water balance components including groundwater recharge on the Federal State level-A case study using the mGROWA model in North Rhine-Westphalia (Germany). Journal of Hydrology: Regional Studies, 4, 294-312.
Islam, S., Singh, R. K. & Khan, R. A. (2015). Methods of estimating ground water recharge. International Journal of Engineering Associates, 5(2). ISSN: 2320-0804) # 6
Karim, A., & Saeid, A. V. (2019). Harmonized world soil database in SWAT https://doi.org/10.1594/PANGAEA.901309
Klemas, V., & Pieterse, A. (2015). Using remote sensing to map and monitor water resources in arid and semi-arid regions. The Handbook of Environmental Chemistry, 33-60. https://doi.org/10.1007/978-3-319-14212-8_2
Mathenge, M. W., Gathuru, G. M., & Kitur, E. L. (2019). Spatial-temporal land use and land cover changes in the Stony Athi sub-catchment, Kenya. IOSR Journal of Applied Geology and Geophysics, 7(5), 43-49. https:// doi: 10.9790/0990-0705024349
Melki, A., Abdollahi, K., Fatahi, R., & Abida, H. (2017). Groundwater recharge estimation under semi-arid climate: Case of Northern Gafsa watershed, Tunisia. Journal of African Earth Sciences, 132, 37-46. https://doi.org/10.1016/j.jafrearsci.2017.04.020
Meresa, E., Girmay, A., & Gebremedhin, A. (2019). Water Balance Estimation Using Integrated GIS-Based WetSpass Model in the Birki Watershed, Eastern Tigray, Northern Ethiopia. Physical Science International Journal, 22(3), 1-17. https://doi: 10.9734/psij/2019/v22i330133
Mohan, C., Western, A. W., Wei, Y., & Saft, M. (2018). Predicting groundwater recharge for varying land cover and climate conditions - a global meta-study. Hydrology and Earth System Sciences, 22(5), 2689-2703. https://doi: 10.5194/hess-22-2689-2018
Morara, M. K., MacOpiyo, L. & Kogi-Makau, W. (2014). Land-use, land cover change in urban pastoral interface. A case study of Kajiado County, Kenya; Journal of Geography and Regional Planning, 7(9), 192-202
Owuor, S. O., Butterbach-Bahl, K., Guzha A. C., Rufino M. C., Pelster, D. E., Díaz-Pins, E., & Breuer, L. (2016). Groundwater recharge rates and surface runoff response to LULC changes in semi-arid environments. Ecological Processes, 5(16) https://doi: 10.1186/s13717-016-0060-6
Pulido-Velazquez, M., Peña-Haro, S., García-Prats, A., Mocholi-Almudever, A., Henriquez-Dole, L., Macian-Sorribes, H., & Lopez-Nicolas, A. (2015). Integrated assessment of the impact of climate and land use changes on groundwater quantity and quality in the Mancha Oriental system (Spain). Hydrology and Earth System Sciences, 19(4), 1677-1693. https://doi: 10.5194/hess-19-1677-2015
Rwanga S. S. (2013). A review on groundwater recharge estimation using WetSpass model. International Conference on Civil and Environmental Engineering (CEE'2013) Nov. 27-28, 2013, Johannesburg (South Africa)
Rwanga, S. S. & Ndambuki, J. M., (2017). Approach to quantify groundwater recharge using GIS based water balance model: A Review International Journal of Research in Chemical, Metallurgical and Civil Engineering, 4(1) (2017) ISSN 2349-1442 EISSN 2349-1450.
Saghravani, S. R., Yusoff, I., Mustapha, S., & Saghravani, S. F., (2013). Estimating groundwater recharge using empirical method: A Case Study in the Tropical Zone. Sains Malaysiana, 42(5), 553-560.
Said, M. Y., Ogutu, J. O., Kifugo, S. C., Makui, O., Robin S., Reid, R. S. & de Leeuw, J. (2016). Effects of extreme land fragmentation on wildlife and livestock population abundance and distribution. Journal for Nature Conservation, 34, 151-164.
Salem, A., Dezs˝o, J., & El-Rawy, M. (2019). Assessment of groundwater recharge, evaporation, and runoff in the Drava Basin in Hungary with the WetSpass model. Hydrology 2019, 6(23). https://doi: 10.3390/hydrology6010023
Saxton, K., & Rawls, W. (2006). Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal, 70(5), 1569-1578. https://doi: 10.2136/sssaj2005.0117
Sombroek, W. G., Braun, H. M. H., & Van der Pouw, B. J. A. (1982). Exploratory soil map and agro-climatic zone map of Kenya, 1980. Kenya Soil Survey.
von Freyberg, J., Moeck, C., & Schirmer, M. (2015). Estimation of groundwater recharge and drought severity with varying model complexity. Journal of Hydrology, 527, 844-857. https://doi.org/10.1016/j.jhydrol.2015.05.025
Wang, L., Dochartaigh, B. O., & Macdonald, D. (2010). A literature review of recharge estimation and groundwater resource assessment in Africa. British Geological Survey Internal Report, IR/10/051, 31pp.
Young, N. E., Anderson, R. S., Chignell, S. M., Vorster, A. G., Lawrence, R., & Evangelista, P. H. (2017). A survival guide to Landsat pre-processing. Ecology, 98(4), 920-932. https://doi: 10.1002/ecy.1730
Zhang, Y., Liu, S., Cheng, F., & Shen, Z. (2017). WetSpass-based study of the effects of urbanization on the water balance components at regional and quadrat scales in Beijing, China. Water, 10(1), https://doi: 10.3390/w10010005
Zarei, M., Ghazavi, R., Vli, A., & Abdollahi, K., (2016). Estimating groundwater recharge, evapotranspiration and surface runoff using land-use data: A Case Study in Northeast Iran. Biological Forum - An International Journal 8(2), 196-202. https://www.researchtrend.net
Zomlot, Z., Verbeiren, B., Huysmans, M., & Batelaan, O. (2015). Spatial distribution of groundwater recharge and base flow: Assessment of controlling factors. Journal of Hydrology: Regional Studies, 4, 349-368. http://dx.doi.org/10.1016/j.ejrh.2015.07.005

Downloads

Published

2020-05-21

How to Cite

Mathenge, M. W., Gathuru, D. G. M., & Kitur, D. E. L. (2020). SPATIAL-TEMPORAL VARIATION OF GROUNDWATER RECHARGE FROM PRECIPITATION IN THE STONY ATHI SUB-CATCHMENT, KENYA. International Journal of Environmental Sciences, 3(1), 21 – 41. https://doi.org/10.47604/ijes.1079

Issue

Section

Articles