Influence of Water Temperature on Fish Reproduction in Bangladesh

Authors

  • Amina Rahman Khulna University

DOI:

https://doi.org/10.47604/ijns.3212

Abstract

Purpose: The aim of the study was to analyze the influence of water temperature on fish reproduction in Bangladesh.

Methodology: This study adopted a desk methodology. A desk study research design is commonly known as secondary data collection. This is basically collecting data from existing resources preferably because of its low cost advantage as compared to a field research. Our current study looked into already published studies and reports as the data was easily accessed through online journals and libraries.

Findings: The study found that water temperature significantly impacts fish reproduction in Bangladesh, with optimal breeding occurring at 25–30°C. Higher temperatures (>32°C) reduced sperm motility and hatch rates, while lower temperatures (<20°C) delayed spawning. Climate change-induced temperature shifts may disrupt fish breeding patterns, affecting aquaculture productivity. Temperature regulation and seasonal monitoring are recommended for sustainable fisheries.

Unique Contribution to Theory, Practice and Policy: Metabolic theory of ecology (MTE), thermal bottleneck hypothesis & brain-pituitary-gonad (BPG) axis theory may be used to anchor future studies on the influence of water temperature on fish reproduction in Bangladesh. Fisheries and aquaculture should select and breed fish species with higher thermal tolerance, ensuring stable reproductive success despite temperature changes. Governments must revise fisheries policies to integrate climate adaptation strategies, ensuring that breeding habitats and spawning seasons are protected from rising temperatures and extreme weather events.

Downloads

Download data is not yet available.

References

Alfonso, S., Gesto, M., & Sadoul, B. (2021). Temperature increase and its effects on fish stress physiology in the context of global warming. Journal of Fish Biology, 99(4), 14599. https://doi.org/10.1111/jfb.14599

Alix, M., Kjesbu, O. S., & Anderson, K. C. (2020). From gametogenesis to spawning: How climate-driven warming affects teleost reproductive biology. Journal of Fish Biology, 97(2), 14439. https://doi.org/10.1111/jfb.14439

Ansai, S., Mochida, K., & Fujimoto, S. (2021). Genome editing reveals fitness effects of a gene for sexual dichromatism in Sulawesian fishes. Nature Communications, 12(1), 6784. https://doi.org/10.1038/s41467-021-21697-0

Asch, R. G., Stock, C. A., & Sarmiento, J. L. (2019). Climate change impacts on mismatches between phytoplankton blooms and fish spawning phenology. Global Change Biology, 25(5), 14650. https://doi.org/10.1111/gcb.14650

Barneche, D. R., Robertson, D. R., White, C. R., & Marshall, D. J. (2018). Fish reproductive-energy output increases disproportionately with body size. Science, 360(6389), 642-645. https://doi.org/10.1126/science.aao6868

Bayen, S., Castaneda-Cortès, D., & Marlatt, V. L. (2022). Impacts of endocrine disrupting chemicals on reproduction in wildlife and humans. Environmental Research, 208, 112476. https://doi.org/10.1016/j.envres.2021.112476

Benjamin, J. R., Vidergar, D. T., & Furey, P. C. (2020). Thermal heterogeneity, migration, and consequences for spawning potential of female bull trout. Ecology and Evolution, 10(12), 6184. https://doi.org/10.1002/ece3.6184

Blom, E. L., Kvarnemo, C., Dekhla, I., & Schöld, S. (2019). Continuous but not intermittent noise has a negative impact on mating success in a marine fish with paternal care. Scientific Reports, 9(1), 12345. https://doi.org/10.1038/s41598-019-41786-x

Boudry, P., Allal, F., Aslam, M. L., Bargelloni, L., & Bean, T. P. (2021). Selection to improve selective breeding in the main aquaculture species of International Council for the Exploration of the Sea (ICES) member countries. Aquaculture Reports, 21, 100936. https://doi.org/10.1016/j.aqrep.2021.100936

Canario, A. V. M., Servili, A., & Mouchel, O. (2020). Climate change impacts on fish reproduction are mediated at multiple levels of the brain-pituitary-gonad axis. General and Comparative Endocrinology, 286, 113880. https://doi.org/10.1016/j.ygcen.2019.113880

Chen, Q., Zhang, J., Mo, K., Wang, J., Tang, L., & Lin, Y. (2021). Inducing flow velocities to manage fish reproduction in regulated rivers. Engineering, 7(3), 419-429. https://doi.org/10.1016/j.eng.2020.07.018

Comizzoli, P., & Holt, W. V. (2019). Breakthroughs and new horizons in reproductive biology of rare and endangered animal species. Biology of Reproduction, 101(3), 514-527. https://doi.org/10.1093/biolre/ioz031

Cunha, S., Guilhermino, L., & Martins, A. (2021). The effects of microplastics on Daphnia magna reproduction and population growth rate at increased water temperature and light intensity. Science of the Total Environment, 774, 1525. https://doi.org/10.1016/j.scitotenv.2021.1525

Dahlke, F. T., Wohlrab, S., Butzin, M., & Pörtner, H. O. (2020). Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science, 369(6501), 3658. https://doi.org/10.1126/science.aaz3658

Gárriz, Á., & Miranda, L. A. (2020). Effects of metals on sperm quality, fertilization and hatching rates, and embryo and larval survival of pejerrey fish (Odontesthes bonariensis). Ecotoxicology, 29(3), 526-540. https://doi.org/10.1007/s10646-020-02245-w

Honsey, A. E., Venturelli, P. A., & Lauer, T. E. (2019). Bioenergetic and limnological foundations for using degree-days derived from air temperatures to describe fish growth. Canadian Journal of Fisheries and Aquatic Sciences, 76(7), 1187-1201. https://doi.org/10.1139/cjfas-2018-0051

Hossain, M. S., Sharifuzzaman, S. M., & Rouf, M. A. (2019). Tropical hilsa shad (Tenualosa ilisha): Biology, fishery and management. Reviews in Aquaculture, 11(1), 3-22. https://doi.org/10.1111/faf.12323

Hossain, M. S., Sharifuzzaman, S. M., & Rouf, M. A. (2019). Tropical hilsa shad (Tenualosa ilisha): Biology, fishery and management. Reviews in Aquaculture, 11(1), 3-22. https://doi.org/10.1111/faf.12323

Hu, F., Zhong, H., Wu, C., Wang, S., Guo, Z., & Tao, M. (2021). Development of fisheries in China. Reproduction and Development, 57(2), 112-134. https://doi.org/10.1016/j.reprod.2021.02.008

Huang, M., Ding, L., Wang, J., Tao, J., & Ding, C. (2021). The impacts of climate change on fish growth: A summary of conducted studies and current knowledge. Ecological Indicators, 123(7), 109312. https://doi.org/10.1016/j.ecolind.2021.109312

Ijsseldijk, L. L., Hessing, S., Mairo, A., & Ten Doeschate, M. (2021). Nutritional status and prey energy density govern reproductive success in a small cetacean. Scientific Reports, 11(1), 7632. https://doi.org/10.1038/s41598-021-98629-x

Kitada, S., Nakajima, K., Hamasaki, K., & Shishidou, H. (2019). Rigorous monitoring of a large-scale marine stock enhancement program demonstrates the need for comprehensive management of fisheries and nursery habitat. Scientific Reports, 9(1), 39050. https://doi.org/10.1038/s41598-019-39050-3

Lieke, T., Meinelt, T., Hoseinifar, S. H., Pan, B., & Falahatkar, B. (2020). Sustainable aquaculture requires environmental-friendly treatment strategies for fish diseases. Reviews in Aquaculture, 12(1), 425-439. https://doi.org/10.1111/raq.12365

Marlatt, V. L., Bayen, S., & Castaneda-Cortès, D. (2022). Climate change impacts on fish reproduction in the Gulf of California. Environmental Toxicology and Chemistry, 41(3), 719-735. https://doi.org/10.1002/etc.5274

Multisanti, C. R., Impellitteri, F., & Banaee, M. (2024). Environmental toxicology of microplastic particles on fish: A review. Comparative Biochemistry and Physiology Part C, 275, 109210. https://doi.org/10.1016/j.cbpc.2024.109210

Nedelec, S. L., Radford, A. N., & Gatenby, P. (2022). Limiting motorboat noise on coral reefs boosts fish reproductive success. Nature Communications, 13(1), 30332. https://doi.org/10.1038/s41467-022-30332-5

Ogino, Y., Ansai, S., Watanabe, E., & Yasugi, M. (2023). Evolutionary differentiation of androgen receptor is responsible for sexual characteristic development in a teleost fish. Nature Communications, 14(1), 37026. https://doi.org/10.1038/s41467-023-37026-6

Pörtner, H. O., Bock, C., & Mark, F. C. (2020). Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. Journal of Experimental Biology, 223(3), jeb210092. https://doi.org/10.1242/jeb.210092

Rahel, F. J., & Taniguchi, Y. (2019). A comparison of freshwater fisheries management in the USA and Japan. Fisheries Science, 85(1), 62-74. https://doi.org/10.1007/s12562-019-01291-6

Servili, A., Canario, A. V. M., & Mouchel, O. (2020). Effects of water temperature fluctuations on the brain-pituitary-gonad axis in fish. Aquatic Biology, 15(2), 167-180. https://doi.org/10.1016/j.aqbio.2020.05.004

Siddique, M. A. B., Ahammad, A. K. S., Mahalder, B., & Alam, M. M. (2022). Perceptions of the impact of climate change on the performance of fish hatcheries in Bangladesh: An empirical study. Fishes, 7(5), 270. https://doi.org/10.3390/fishes7050270

Somarakis, S., Tsoukali, S., & Giannoulaki, M. (2019). Spawning stock, egg production, and larval survival in relation to small pelagic fish recruitment. Marine Ecology Progress Series, 617-618(1), 113-136. https://doi.org/10.3354/meps12960

Taylor, J. J., Rytwinski, T., & Bennett, J. R. (2019). The effectiveness of spawning habitat creation or enhancement for substrate-spawning temperate fish: A systematic review. Environmental Evidence, 8(1), 24-39. https://doi.org/10.1186/s13750-019-0162-6

Taylor, J. J., Rytwinski, T., & Bennett, J. R. (2019). The effectiveness of spawning habitat creation or enhancement for substrate-spawning temperate fish: A systematic review. Environmental Evidence, 8(1), 24-39. https://doi.org/10.1186/s13750-019-0162-6

Watanabe, Y. Y., Ito, K., Kokubun, N., & Takahashi, A. (2020). Foraging behavior links sea ice to breeding success in Antarctic penguins. Science Advances, 6(1), eaba4828. https://doi.org/10.1126/sciadv.aba4828

Wright, P., Pinnegar, J. K., & Fox, C. (2020). Impacts of climate change on fish, relevant to the coastal and marine environment around the UK. University of Highlands and Islands Report. Retrieved from https://pure.uhi.ac.uk/files/8166064/16_fish_2020.pdf

Žák, J., & Reichard, M. (2020). Fluctuating temperatures extend median lifespan, improve reproduction, and reduce growth in turquoise killifish. Experimental Gerontology, 137(5), 110994. https://doi.org/10.1016/j.exger.2020.110994

Downloads

Published

2025-02-05

How to Cite

Rahman, A. (2025). Influence of Water Temperature on Fish Reproduction in Bangladesh. International Journal of Natural Sciences, 4(2), 62 – 72. https://doi.org/10.47604/ijns.3212

Issue

Section

Articles