An Elliptical Slot Ring Defected Ground Structure (ESR-DGS) Based Antenna Design for 5G Applications

Authors

  • Abdullah Al-Husseini Al-Furat Al-Awsat Technical University
  • Mohanad Al-Ibadi Al-Furat Al-Awsat Technical University
  • Qusay Jalil Kadhim Al-Furat Al-Awsat Technical University

DOI:

https://doi.org/10.47604/ijts.3202

Keywords:

Inverted-F Patch Slot, Elliptical Slot Ring (ESR), Defective Ground Structure (DGS), 5G, WiFi/WiMAX

Abstract

Purpose: Continuous demand is for precise and compact systems that operate with 5G wireless technologies. The size and compactness of devices play a major role in developing communication systems, especially in 5G applications. One of the main components in 5G systems is the antenna system; it should be designed to meet 5G requirements. In this article, a microstrip antenna is designed with a resonant frequency of 12 GHz using an FR4 substrate with an overall size of 15x15x1.6 mm3 for 5G applications.

Methodology: The patch is etched with an inverted-F slot with optimized dimensions of 0.5x2.5 mm2 and 0.5x5.5 mm2 to perform a resonant frequency of 6.2 GHz. The antenna is optimized to operate with 5.38 GHz with the same dimensions using double elliptical slots ring resonators (ESR) defective ground plane (DGND) with outer radii of (5 mm, and 4 mm) and inner of (4.25 mm, and 3.25 mm) with gap-space of 0.25 mm between them to perform a size reduction ratio of 82.558%.

Findings: This allows the antenna to operate with 5G applications such as WiFi and WiMAX. The antenna can be fabricated easily on an FR4 substrate with height, permittivity, and loss tangents of 1.6 mm, 4.3, and 0.02. It also can be implemented with metamaterial and studied/analyzed of the other antenna's performance for further size reduction.   

Unique Contribution to Theory, Practice and Policy: The antenna configuration supports up to 82.558% size reduction. The proposed structure operates with return loss, gain, radiation efficiency, and bandwidth of -37 dB, 2.21 dB, 75.8%, and 122.2 MHz from (5.4417-5.3195) GHz respectively.

Downloads

Download data is not yet available.

References

A. Jabber, A., & H. Thaher, R. (2021). DUAL-BAND RECONFIGURABLE MIMO ANTENNA FOR WIRELESS APPLICATIONS. Journal of Engineering and Sustainable Development, 25(3), 1-9. doi:10.31272/jeasd.25.3.1

Andrews, C. J. M., Narayanan, A. S. K., & Marazhchal Sunil, A. (2024). Compact Metamaterial based Antenna for 5G Applications. Results in Engineering, 24, 103269. doi:https://doi.org/10.1016/j.rineng.2024.103269

Balanis, C. A. (2016). Antenna Theory: Analysis and Design (4th Edition ed.): Wiley

Chakraborty, S., Rahman, M. A., Hossain, M. A., Nishiyama, E., & Toyoda, I. (2024). A novel dual-band elliptical ring slot MIMO antenna with orthogonal circular polarization for 5G applications. Heliyon, 10(13), e33176. doi:10.1016/j.heliyon.2024.e33176

Chalasani, S. R., Boppana, S. L., & Kuruganti, P. R. K. (2020). Design and Analysis of Compact Wideband Elliptical Patch Antenna, Cham.

Chandra Paul, L., Chandra Das, S., Rani, T., Muyeen, S. M., Shezan, S. A., & Ishraque, M. F. (2022). A slotted plus-shaped antenna with a DGS for 5G Sub-6 GHz/WiMAX applications. Heliyon, 8(12), e12040. doi:https://doi.org/10.1016/j.heliyon.2022.e12040

Chiang, K. H., & Tam, K. W. (2008). Microstrip Monopole Antenna With Enhanced Bandwidth Using Defected Ground Structure. IEEE Antennas and Wireless Propagation Letters, 7, 532-535. doi:10.1109/LAWP.2008.2005592

Ganesan, I., & Iympalam, P. (2023). Design of ultra wideband circular slot antenna for emergency communication applications. e-Prime - Advances in Electrical Engineering, Electronics and Energy, 6, 100371. doi:https://doi.org/10.1016/j.prime.2023.100371

Gao, G. P., Hu, B., Wang, S. F., & Yang, C. (2018). Wearable Circular Ring Slot Antenna With EBG Structure for Wireless Body Area Network. IEEE Antennas and Wireless Propagation Letters, 17(3), 434-437. doi:10.1109/LAWP.2018.2794061

Guha, D., Kumar, C., & Pal, S. (2009). Improved Cross-Polarization Characteristics of Circular Microstrip Antenna Employing Arc-Shaped Defected Ground Structure (DGS). IEEE Antennas and Wireless Propagation Letters, 8, 1367-1369. doi:10.1109/LAWP.2009.2039462

Hanae Elftouh, N. A. T., Mohamed Aghoutane, Safae El Amrani,Antonio Tazon, and Mohamed Boussouis. (2014). Miniaturized Microstrip Patch Antenna with Defected Ground Structure. Progress In Electromagnetics Research, 55,, 25–33.

Hanaoui, M., & Rifi, M. (2019, 24-25 Oct. 2019). Elliptical Slot Rectangular Patch Antenna Array with Dual Band Behaviour for Future 5G Wireless Communication Networks. Paper presented at the 2019 7th Mediterranean Congress of Telecommunications (CMT).

J. X. Liu, W. Y. Y., and S. L. He (2010). A NEW DEFECTED GROUND STRUCTURE AND ITS APPLICATION FOR MINIATURIZED SWITCHABLE ANTENNA. Progress In Electromagnetics Research, 107, 115–128. doi:https ://doi.org/10.1109/ROPEC.2013.67027 32

Jabber, A. A., & H. Thaher, R. (2020). New compact multiband inverted-L frequency reconfigurable antenna for cognitive radio applications. 2020, 19(1), 9. doi:10.11591/ijeecs.v19.i1.pp267-275

Jabber, A. A., Jassim, A. K., & Thaher, R. H. (2020). Compact 3x1 Elements Reconfigurable MIMO Antenna for Cognitive Radio Applications. IOP Conference Series: Materials Science and Engineering, 881(1), 012148. doi:10.1088/1757-899X/881/1/012148

Jabber, A. A., & Shadeed, G. A. (2022, 24-25 Oct. 2022). Bandwidth Control for Compact UWB Band Antenna in Ultra-Wide Band Applications. Paper presented at the 2022 2nd International Conference on Advances in Engineering Science and Technology (AEST).

Jabber, A. A., & Shadeed, G. A. (2023). Design and analysis of two elements reconfigurable ultra-wideband multi input multi output (UWB-MIMO) antenna for wireless applications. AIP Conference Proceedings, 2651(1). doi:10.1063/5.0106044

Jabber, A. A., & Thaher, R. H. (2020). Compact tri-band T-shaped frequency reconfigurable antenna for cognitive radio applications. 2020, 9(1), 9. doi:10.11591/eei.v9i1.1708

Jabber, A. A., & Thaher, R. H. (2020, 26-27 Feb. 2020). Multiband Reconfigurable MIMO Antenna for Wireless Applications. Paper presented at the 2020 6th International Engineering Conference “Sustainable Technology and Development" (IEC).

Kumar, A., Mahto, S. K., Sinha, R., & Choubey, A. (2021). Dual circular slot ring triple-band MIMO antenna for 5G applications. 75(3-4), 91-100. doi:doi:10.1515/freq-2020-0138

Kumar, M., & Nath, V. (2020). A circularly polarized printed elliptical wide-slot antenna with high bandwidth-dimension-ratio for wireless applications. Wireless Networks, 26(7), 5485-5499. doi:10.1007/s11276-020-02399-9

Kumar, S., Dixit, A. S., Malekar, R. R., Raut, H. D., & Shevada, L. K. (2020). Fifth Generation Antennas: A Comprehensive Review of Design and Performance Enhancement Techniques. IEEE Access, 8, 163568-163593. doi:10.1109/ACCESS.2020.3020952

Marotkar, D. S., & Zade, P. (2016, 3-5 March 2016). Bandwidth enhancement of microstrip patch antenna using defected ground structure. Paper presented at the 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT).

Nadeem, I., & Choi, D.-Y. (2018). Broadband Printed Antenna with Modified Rectangular Patch and U-Slot in Ground Plane. Radioelectronics and Communications Systems, 61(12), 556-564. doi:10.3103/S0735272718120038

Nasri, N. E. h., El Ghzaoui, M., & Fattah, M. (2024). A quad port MIMO antenna with improved bandwidth and high gain for 38 GHz 5G applications. Franklin Open, 6, 100078. doi:https://doi.org/10.1016/j.fraope.2024.100078

Okas, P., Sharma, A., Das, G., & Gangwar, R. K. (2018). Elliptical slot loaded partially segmented circular monopole antenna for super wideband application. AEU - International Journal of Electronics and Communications, 88, 63-69. doi:https://doi.org/10.1016/j.aeue.2018.03.004

Paul, L. C., Hye, S. A., Rani, T., Hossain, M. I., Karaaslan, M., Ghosh, P., & Saha, H. K. (2023). A compact wrench-shaped patch antenna with a slotted parasitic element and semi-circular ground plane for 5G communication. e-Prime - Advances in Electrical Engineering, Electronics and Energy, 6, 100334. doi:https://doi.org/10.1016/j.prime.2023.100334

Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., . . . Gutierrez, F. (2013). Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! IEEE Access, 1, 335-349. doi:10.1109/ACCESS.2013.2260813

Saleh, S., Saeidi, T., Timmons, N., & Razzaz, F. (2024). A comprehensive review of recent methods for compactness and performance enhancement in 5G and 6G wearable antennas. Alexandria Engineering Journal, 95, 132-163. doi:https://doi.org/10.1016/j.aej.2024.03.097

Saxena, S., Sharma, R., & Deo Upadhayay, M. (2020). Triple Band Antenna For WLAN/WiMAX Applications. Materials Today: Proceedings, 29, 568-572. doi:https://doi.org/10.1016/j.matpr.2020.07.314

Sharma, V., Gunaram, Deegwal, J. K., & Mathur, D. (2022). Super-Wideband Compact Offset Elliptical Ring Patch Antenna for 5G Applications. Wireless Personal Communications, 122(2), 1655-1670. doi:10.1007/s11277-021-08965-4

Tecpoyotl-Torres, M., Dimas, J. G. V., Castañeda-Sotelo, R., & Vargas-Bernal, R. (2013, 13-15 Nov. 2013). Rectangular patch antenna array with defect ground structure for Wi-Fi. Paper presented at the 2013 IEEE International Autumn Meeting on Power Electronics and Computing (ROPEC).

Ullah, S., Ruan, C., Sadiq, M. S., Haq, T. U., Fahad, A. K., & He, W. (2020). Super Wide Band, Defected Ground Structure (DGS), and Stepped Meander Line Antenna for WLAN/ISM/WiMAX/UWB and other Wireless Communication Applications. Sensors (Basel), 20(6). doi:10.3390/s20061735

Zhang, X., Ur Rahman, S., Cao, Q., Gil, I., & khan, M. I. (2019). A Novel SWB Antenna with Triple Band-Notches Based on Elliptical Slot and Rectangular Split Ring Resonators. Electronics, 8(2). Retrieved from doi:10.3390/electronics8020202

Downloads

Published

2025-01-31

How to Cite

Al-Husseini, A., Al-Ibadi, M., & Kadhim, Q. (2025). An Elliptical Slot Ring Defected Ground Structure (ESR-DGS) Based Antenna Design for 5G Applications. International Journal of Technology and Systems, 10(1), 42–56. https://doi.org/10.47604/ijts.3202

Issue

Section

Articles