A Robust Multivariate Logistic Regression Model for Smart Parking Occupancy Prediction
DOI:
https://doi.org/10.47604/ijts.3357Keywords:
Smart Parking, Urban Mobility, Multivariate Logistic Regression, Robust OLS, Predictive ModelingAbstract
Purpose: This study developed an enhanced multivariate logistic regression (MLR) model integrated with robust ordinary least squares (ROLS) techniques to address parking occupancy prediction challenges in rapidly urbanizing environments. Focusing on developing country contexts with infrastructure constraints, the research targeted three limitations of conventional approaches: vulnerability to data anomalies, insufficient interpretability, and poor adaptation to resource-limited settings.
Methodology: Employing design science research (DSR) methodology, the study utilized parking datasets from Kaggle and GitHub repositories. Comprehensive preprocessing included ROLS-based outlier treatment and temporal/environmental feature engineering. The model incorporated SHapley Additive exPlanations (SHAP) for interpretability and underwent hyperparameter optimization via grid search. Evaluation employed an 80-20 train-test split with accuracy, precision, recall, F1-score, and AUC-ROC metrics.
Findings: The ensemble model achieved superior performance (R²=0.9007, MSE=0.00878, accuracy=91.56%) compared to standalone MLR (84.31% accuracy) and ROLS (MSE=0.00872) implementations. Key predictors included historical occupancy patterns, temporal variables, and weather conditions. SHAP analysis confirmed the model's operational transparency while maintaining computational efficiency.
Unique Contribution to Theory, Practice and Policy: Implementation in real-time smart parking systems through IoT networks is recommended. Future research should pursue: 1) cross-regional validation studies, 2) dynamic pricing algorithm integration, and 3) enhanced anomaly detection mechanisms. The study provides a theoretically grounded yet practical solution optimized for developing urban contexts.
Downloads
References
Abdulla Almahdi, Mamlook, A., Nishantha Bandara, Ali Saeed Almuflih, Nasayreh, A., Hasan Gharaibeh, Fahad Alasim, Abeer Aljohani, & Jamal, A. (2023). Boosting Ensemble Learning for Freeway Crash Classification under Varying Traffic Conditions: A Hyperparameter Optimization Approach. Sustainability, 15(22), 15896–15896. https://doi.org/10.3390/su152215896
Abonazel, M. R., & Ibrahim, M. G. (2018). On estimation methods for binary logistic regression model with missing values. International Journal of Mathematics and Computational Science, 4(3), 79-85.
Al-Turjman, F., & Malekloo, A. (2019). Smart parking in IoT-enabled cities: A survey. Sustainable Cities and Society, 49, 101608.
Awaisi, K. S., Abbas, A., Khattak, H. A., Ahmad, A., Ali, M., & Khalid, A. (2023). Deep reinforcement learning approach towards a smart parking architecture. Cluster Computing, 26(1), 255–266. https://doi.org/10.1007/s10586-022-03599-y
Benny, L., & Soori, P. K. (2017). Prototype of Parking Finder Application for Intelligent Parking System. International Journal on Advanced Science, Engineering and Information Technology, 7(4), 1185. https://doi.org/10.18517/ijaseit.7.4.2326
Bock, F., Di Martino, S., & Origlia, A. (2020). Smart Parking: Using a Crowd of Taxis to Sense On-Street Parking Space Availability. IEEE Transactions on Intelligent Transportation Systems, 21(2), 496–508. https://doi.org/10.1109/TITS.2019.2899149
Cao, X., Cui, X., Yue, M., Chen, J., Tanikawa, H., & Ye, Y. (2013). Evaluation of wildfire propagation susceptibility in grasslands using burned areas and multivariate logistic regression. International Journal of Remote Sensing, 34(19), 6679–6700. https://doi.org/10.1080/01431161.2013.805280
Chellatore, M. P., & Sharma, S. (2024, June). Mobile Application for Identifying Anomalous Behavior and Conducting Time Series Analysis Using Heterogeneous Data. In International Conference on Human-Computer Interaction (pp. 167-182). Cham: Springer Nature Switzerland.
Dewi, C., Tsai, B.-J., & Chen, R.-C. (2022). Shapley Additive Explanations for Text Classification and Sentiment Analysis of Internet Movie Database (pp. 69–80). https://doi.org/10.1007/978-981-19-8234-7_6
Elias, F., Reza, M. S., Mahmud, M. Z., Islam, S., & Alve, S. R. (2025, September 25). Machine Learning Meets Transparency in Osteoporosis Risk Assessment: A Comparative Study of ML and Explainability Analysis. Arxiv.org. https://arxiv.org/html/2505.00410v2
Fatima, S., Hussain, A., Amir, S., Syed, H., Ahmed, S., Muhammad, H., & Aslam. (2023). XGBoost and Random Forest Algorithms: An In- Depth Analysis (pp. 26–31). Pakistan Journal of Scientific Research, PJOSR.
Ferreira, D., Ferreira, S. S., Nunes, C., & Mexia, J. T. (2017). Estimation in mixed models through three step minimizations. Communications in Statistics - Simulation and Computation, 46(2), 1156–1166. https://doi.org/10.1080/03610918.2014.992544
Fransen, K., Versigghel, J., Guzman Vargas, D., Semanjski, I., & Gautama, S. (2023). Sustainable mobility strategies deconstructed: a taxonomy of urban vehicle access regulations. European Transport Research Review, 15(1), 3. https://doi.org/10.1186/s12544-023-00576-3
Gao, H., Yun, Q., Ran, R., & Ma, J. (2021). Smartphone-based parking guidance algorithm and implementation. Journal of Intelligent Transportation Systems, 25(4), 412-422.
Inam, S., Mahmood, A., Khatoon, S., Alshamari, M., & Nawaz, N. (2022). Multisource data integration and comparative analysis of machine learning models for on-street parking prediction. Sustainability, 14(12), 7317.
Jiao, X., Pretis, F., & Schwarz, M. (2024). Testing for coefficient distortion due to outliers with an application to the economic impacts of climate change. Journal of Econometrics, 239(1), 105547.
Judkins, D. R., & Porter, K. E. (2016). Robustness of ordinary least squares in randomized clinical trials. Statistics in Medicine, 35(11), 1763-1773.
Jusat, N., Zainuddin, A. A., Sahak, R., Andrew, A. B., Subramaniam, K., & Rahman, N. A. (2021). Critical Review In Smart Car Parking Management Systems. 2021 IEEE 7th International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA), 128–133. https://doi.org/10.1109/ICSIMA50015.2021.9526322
Kartelj, A., & Djukanović, M. (2023). RILS-ROLS: robust symbolic regression via iterated local search and ordinary least squares. Journal of Big Data, 10(1), 71. https://doi.org/10.1186/s40537-023-00743-2
Kirschner, F., & Lanzendorf, M. (2020). Parking management for promoting sustainable transport in urban neighbourhoods. A review of existing policies and challenges from a German perspective. Transport Reviews, 40(1), 54–75. https://doi.org/10.1080/01441647.2019.1666929
Kotb, A. O., Shen, Y., & Huang, Y. (2017). Smart Parking Guidance, Monitoring and Reservations: A Review. IEEE Intelligent Transportation Systems Magazine, 9(2), 6–16. https://doi.org/10.1109/mits.2017.2666586
Kumar, B. V., Mannan, K., Rajesh, M., Kothandaraman, D., Harshavardhan, A., & Kumaraswamy, P. (2022, December). Smart Parking System Using Raspberry Pi. In International Conference on Information and Management Engineering (pp. 243-250). Singapore: Springer Nature Singapore.
Lee, C., & Kim, H. (2022). Machine learning-based predictive modeling of depression in hypertensive populations. PLOS ONE, 17(7), e0272330. https://doi.org/10.1371/journal.pone.0272330
Loh, P.-L. (2024). A Theoretical Review of Modern Robust Statistics. Annual Review of Statistics and Its Application, 12, 477–496. https://doi.org/10.1146/annurev-statistics-112723-034446
Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in neural information processing systems, 30.
Michaelides, P. G. (2024). Ordinary Least Squares. Springer Nature, 29–44. https://doi.org/10.1007/978-3-031-76140-9_3
Micko, K., Papcun, P., & Zolotova, I. (2023). Review of IoT Sensor Systems Used for Monitoring the Road Infrastructure. Sensors (14248220), 23(9), 4469. https://doi.org/10.3390/s23094469
Musa, A. A., Malami, S. I., Alanazi, F., Ounaies, W., Alshammari, M., & Haruna, S. I. (2023). Sustainable traffic management for smart cities using internet-of-things-oriented intelligent transportation systems (ITS): challenges and recommendations. Sustainability, 15(13), 9859.
Naidu, G., Zuva, T., & Sibanda, E. M. (2023). A Review of Evaluation Metrics in Machine Learning Algorithms (pp. 15–25). https://doi.org/10.1007/978-3-031-35314-7_2
Noshad, Z., Javaid, N., Saba, T., Wadud, Z., Saleem, M. Q., Alzahrani, M. E., & Sheta, O. E. (2019). Fault detection in wireless sensor networks through the random forest classifier. Sensors, 19(7), 1568.
Patchipala, S. (2023). Tackling data and model drift in AI: Strategies for maintaining accuracy during ML model inference. International Journal of Science and Research Archive, 10(2), 1198-1209.
Piccialli, F., Giampaolo, F., Prezioso, E., Crisci, D., & Cuomo, S. (2021). Predictive Analytics for Smart Parking: A Deep Learning Approach in Forecasting of IoT Data. ACM Transactions on Internet Technology, 21(3), 1–21. https://doi.org/10.1145/3412842
Rasheed, B. A., Adnan, R., Saffari, S. E., & dano Pati, K. (2014). Robust weighted least squares estimation of regression parameter in the presence of outliers and heteroscedastic errors. Jurnal Teknologi (Sciences & Engineering), 71(1).
Rhayem, A., Mhiri, M. B. A., & Gargouri, F. (2020). Semantic web technologies for the internet of things: Systematic literature review. Internet of Things, 11, 100206.
Rokem, A., & Kay, K. (2020). Fractional ridge regression: a fast, interpretable reparameterization of ridge regression. GigaScience, 9(12), giaa133.
Shahrier, M., Hasnat, A., Al‐Mahmud, J., Huq, A. S., Ahmed, S., & Haque, M. K. (2024). Towards intelligent transportation system: A comprehensive review of electronic toll collection systems. IET Intelligent Transport Systems, 18(6), 965-983.
Siedlecki, S. L. (2020). Understanding Descriptive Research Designs and Methods. Clinical Nurse Specialist, 34(1), 8–12. https://doi.org/10.1097/NUR.0000000000000493
Štrumbelj, E., & Kononenko, I. (2014). Explaining prediction models and individual predictions with feature contributions. Knowledge and information systems, 41, 647-665.
Wu, P., Zhang, Z., Peng, X., & Wang, R. (2024). Deep learning solutions for smart city challenges in urban development. Scientific Reports, 14(1), 5176.
Xiao, X., Peng, Z., Lin, Y., Jin, Z., Shao, W., Chen, R., ... & Mao, G. (2023). Parking prediction in smart cities: A survey. IEEE Transactions on Intelligent Transportation Systems, 24(10), 10302-10326.
Yanxu Zheng, Rajasegarar, S., & Leckie, C. (2015). Parking availability prediction for sensor-enabled car parks in smart cities. 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 1–6. https://doi.org/10.1109/ISSNIP.2015.7106902
Yuri. (2023). A Strategy of Smart Mobility Implementation: Characteristics, Factors, and Citizen Expectations (Doctoral dissertation, Seoul National University).
Zhang, W., & Wang, K. (2020). Parking futures: Shared automated vehicles and parking demand reduction trajectories in Atlanta. Land Use Policy, 91, 103963.
Zhu, Y., Liu, J., Gu, S., & Wang, H. (2020). Single-Index ESL Robust Regression and Application. 2020 International Conference on Big Data and Social Sciences (ICBDSS), 59–64. https://doi.org/10.1109/ICBDSS51270.2020.00021
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Josephine Jepngetich Tanui , Dr. Solomon Mwanjele, Prof. Cheruyoit W.K , Dr. Gibson Kimutai

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.