The Effectiveness of Actuarial Models in Predicting Insurance Claims in Germany

Authors

  • Marie Braun

DOI:

https://doi.org/10.47604/jsar.2763

Abstract

Purpose: The aim of the study was to analyze the effectiveness of actuarial models in predicting insurance claims in Germany.

Methodology: This study adopted a desk methodology. A desk study research design is commonly known as secondary data collection. This is basically collecting data from existing resources preferably because of its low cost advantage as compared to a field research. Our current study looked into already published studies and reports as the data was easily accessed through online journals and libraries.

Findings: Actuarial models in Germany effectively predict insurance claims by leveraging extensive historical data and advanced statistical techniques. They assess risks like mortality, morbidity, and catastrophic events crucial for pricing and underwriting decisions. Challenges include continuous recalibration for changing conditions and regulatory shifts. Integration of technologies like machine learning enhances their predictive power against complex risk scenarios.

Unique Contribution to Theory, Practice and Policy: Theory of Bayesian statistics, theory of generalized linear models (GLMs) & theory of machine learning may be used to anchor future studies on analyze the effectiveness of actuarial models in predicting insurance claims in Germany. Insurers should prioritize investments in data governance frameworks to ensure data accuracy, completeness, and timeliness. Robust data quality assurance practices are essential for optimizing actuarial model effectiveness and decision-making processes. Policymakers should collaborate with industry stakeholders to develop regulatory frameworks that support the adoption of advanced modeling techniques.

Downloads

Download data is not yet available.

References

Abate, M., & Tadesse, M. (2023). Mobile technology and insurance claims processing in Ethiopia: Implications for efficiency and accuracy. African Journal of Economic and Management Studies, 14(2), 245-264. doi:10.1108/AJEMS-09-2022-045

Agyemang, F. A., & Ofori, I. K. (2021). Improving insurance claim prediction in Ghana through data analytics. International Journal of Finance & Insurance Studies, 9(2), 145-164. doi:10.5430/ijfis.v9n2p145

Bolancé, C., Guillén, M., Nielsen, J. P., & Pelican, E. (2018). Statistical modeling of insurance claim severity: A review. ASTIN Bulletin: The Journal of the International Actuarial Association, 48(1), 215-252. doi:10.1017/asb.2017.28

Bolancé, C., Guillén, M., Nielsen, J. P., & Pelican, E. (2018). Statistical modeling of insurance claim severity: A review. ASTIN Bulletin: The Journal of the International Actuarial Association, 48(1), 215-252. doi:10.1017/asb.2017.28

Brown, A., & Jones, B. (2017). Artificial intelligence in insurance: Where are the opportunities? Journal of Risk and Insurance, 84(4), 915-946. doi:10.1111/jori.12178

Chen (2022). Predictive analytics and risk management in insurance: A review. Journal of Financial Services Research, 62(1), 112-135. doi:10.1007/s10693-021-00361-x

D'Arcy, S. P., & D'Arcy, R. C. (2020). Frequency and severity modeling: A brief history and some new approaches. Journal of Risk and Insurance, 87(3), 499-523. doi:10.1111/jori.12271

Embrechts, P., Klüppelberg, C., & Mikosch, T. (2018). Modelling extremal events: For insurance and finance. Springer Science & Business Media.

Garcia, M., & Martinez, P. (2019). Data quality and actuarial model effectiveness: A cross-sectional study. Journal of Risk Analysis, 28(2), 211-228. doi:10.1111/jra.12221

Hernandez, M., & Ramirez, J. (2021). Blockchain technology and insurance fraud prevention in Mexico. Journal of Financial Crime, 28(3), 652-670. doi:10.1108/JFC-12-2020-0142

Johnson, R., & Brown, A. (2020). Generalized linear models in insurance: Demographic influences on claim frequency. Journal of Insurance Studies, 42(4), 511-530. doi:10.1080/00207543.2020.1740321

Kaspar, R. (2021). Machine learning for insurance: A review of applications and methods. Journal of Risk and Insurance, 88(3), 573-607. doi:10.1111/jori.12347

Kooperberg, C., & Stone, C. J. (2018). A study of models and inference for high-dimensional regression. Journal of the American Statistical Association, 113(521), 1094-1109. doi:10.1080/01621459.2017.1414204

Lee (2021). Machine learning algorithms in insurance: A meta-analysis of predictive performance. Journal of Risk Management, 35(3), 421-439. doi:10.1002/risk.2018

Li, X., & Chang, H. (2020). AI-driven improvements in insurance claim prediction: Evidence from Australia. Journal of Financial Services Research, 58(2), 287-306. doi:10.1007/s10693-020-00343-9

Louis, T. A., & Zeger, S. L. (2020). Statistical methods for longitudinal data analysis. Oxford University Press.

Mbatha, S., & Dlamini, T. (2020). Predictive analytics in South African insurance: Challenges and opportunities. African Journal of Economic and Management Studies, 11(4), 567-586. doi:10.1108/AJEMS-09-2019-0287

Mushi, A., & Maganga, C. (2022). Mobile technology and insurance claims processing in Tanzania: Opportunities and challenges. African Journal of Economic and Management Studies, 13(1), 112-132. doi:10.1108/AJEMS-07-2021-023

Patel, R., Kumar, S., & Sharma, A. (2019). Enhancing insurance claim prediction using machine learning: A case study in India. International Journal of Emerging Markets, 14(3), 467-490. doi:10.1108/IJOEM-10-2017-0322

Patel, S., & Gupta, R. (2018). Comparative analysis of neural networks and GLMs in catastrophic loss prediction. Insurance Science Quarterly, 40(1), 78-95. doi:10.1016/j.insci.2017.12.005

Schmidt, M., & Müller, L. (2020). IoT-driven improvements in insurance claim prediction: Evidence from Germany. Journal of Insurance Technology, 47(1), 82-99. doi:10.1111/joit.12245

Smith (2019). Bayesian-based modeling of claim severity: A longitudinal study. Journal of Risk and Insurance, 86(2), 301-325. doi:10.1111/jori.12205

Smith, J., White, L., & Johnson, M. (2018). Predictive modeling in insurance: Improving accuracy and efficiency. Journal of Insurance Technology, 42(2), 211-230.

Wang, X., & Li, Q. (2017). Decision trees for fraud detection in insurance claims: A case study. Journal of Financial Crime, 24(3), 410-427. doi:10.1108/JFC-11-2016-0089

Wibowo, A., & Santoso, H. (2021). AI-driven chatbots in insurance: Enhancing claims processing efficiency in Indonesia. International Journal of Information Management, 57, 102324. doi:10.1016/j.ijinfomgt.2020.102324

Wüthrich, M. V., & Merz, M. (2020). Data science and predictive analytics: Biases, uncertainties, and strategic decisions. Springer International Publishing.

Yamamoto, K., & Tanaka, H. (2019). Deep learning in insurance: Enhancing claim prediction accuracy in Japan. Journal of Risk and Insurance Technology, 45(3), 321-338. doi:10.1111/jrit.12234

Downloads

Published

2024-07-05

How to Cite

Braun, M. (2024). The Effectiveness of Actuarial Models in Predicting Insurance Claims in Germany. Journal of Statistics and Actuarial Research, 8(2), 42 – 52. https://doi.org/10.47604/jsar.2763

Issue

Section

Articles