Nucleoside Derivatives: An Assessment of Its Synthesis and Application
DOI:
https://doi.org/10.47604/ijns.3155Keywords:
Nucleoside Derivatives, Nucleoside Variations, Synthesis MethodologiesAbstract
Purpose: This review advances the synthesis methodologies, biological roles, and therapeutic applications of nucleoside derivatives, emphasizing their pivotal role in the development of biomedical sciences.
Methodology: There are several methods for synthesizing nucleosides, including fusion reactions, metal salt procedures, and the Hilbert-Johnson method, each of which offers distinct advantages and challenges. These synthetic approaches take advantage of the interaction of sugars and nitrogenous bases, allowing for tailored modifications for specific applications.
Findings: Nucleoside derivatives, essential molecules that are the building blocks of nucleic acids such as DNA and RNA, exhibit diverse structural and functional properties. Their biological synthesis, through novel pathways or rescue mechanisms, ensures the availability of the primary genetic material. Synthetic nucleoside derivatives have found significant roles in medicinal chemistry, particularly in antiviral, anticancer and antibacterial therapies. Modifications of sugars or basic components have led to the emergence of pioneering drugs such as acyclovir, zidovudine and remdesivir.
Unique Contribution to Theory, Practice and Policy: Nucleoside derivatives have great therapeutic potential. They act as antiviral agents by disrupting viral replication and as chemotherapeutics targeting rapidly dividing cells in cancers. However, their efficacy faces challenges such as toxicity and development of resistance. Ongoing research aims to enhance their safety and expand their applications in molecular biology, diagnostics and nanotechnology.
Downloads
References
Leonard, P., Zhang, A., Budow-Busse, S., Daniliuc, C., & Seela, F. (2024). α-d-2′-Deoxyadenosine, an irradiation product of canonical DNA and a component of anomeric nucleic acids: crystal structure, packing and Hirshfeld surface analysis. Acta Crystallographica Section C: Structural Chemistry, 80(2)..
Talasila, D. S. (2022). Ferrocenium Salt Aided Substitution Reactions and Synthesis of Glycosylated Curcumin Derivatives
Leonard, P., Zhang, A., Budow-Busse, S., Daniliuc, C., & Seela, F. (2024). α-d-2′-Deoxyadenosine, an irradiation product of canonical DNA and a component of anomeric nucleic acids: crystal structure, packing and Hirshfeld surface analysis. Acta Crystallographica Section C: Structural Chemistry, 80(2).
Trapp, O. (2021). First Steps Towards Molecular Evolution. Prebiotic Chemistry and the Origin of Life, 165-182.
Matušková, V. Synthesis and study of biological activity of novel purine nucleosides.
Crawford, C. J., & Seeberger, P. H. (2023). Advances in glycoside and oligosaccharide synthesis. Chemical Society Reviews.
Bryan, M. W., Vann, V. J., & Thomas, S. B. (2022). Equity and trusts in Australia. Cambridge University Press.
Ritchie, R. G. S., Vyas, D. M., & Szarek, W. A. (1978). Addition of pseudohalogens to unsaturated carbohydrates. VI. Synthesis of 4′-thiocordycepin. Canadian Journal of Chemistry, 56(6), 794-802.
An, S., Wang, Q., Zhu, W., Sun, Q., He, G., & Chen, G. (2021). Palladium-catalyzed O-and N-glycosylation with glycosyl chlorides. CCS Chemistry, 3(7), 1821-1829.
UEDA, T., & OHTSUKA, H. (1973). Nucleosides and Nucleotides. VII. Synthesis of 2-Thiocytidine by the Extended Hilbert-Johnson Procedure. Chemical and Pharmaceutical Bulletin, 21(7), 1530-1534.
Prystaš, M., Farkaš, J., & Šorm, F. (1965). Nucleic acids components and their analogues. LXVIII. Synthesis of anomeric 2-deoxy-D-ribofuranosyl derivatives of uracil and thymine. Collection of Czechoslovak Chemical Communications, 30(9), 3123-3133.
Yang, H., Budow, S., Eickmeier, H., Reuter, H., & Seela, F. (2013). 1, 7-Dideaza-2′-deoxy-6-nitronebularine: a pyrrolo [2, 3-b] pyridine nucleoside with an intramolecular hydrogen bond stabilizing the syn conformation. Acta Crystallographica Section C: Crystal Structure Communications, 69(8), 892-895.
Birkofer, L., Ritter, A., & Kühlthau, H. P. (1963). Harnsäure-3-ribofuranosid und Harnsäure-3-glucopyranosid N-Glykoside durch siliciumorganische Synthese. Angewandte Chemie, 75(4), 209-210.
Wang, Z. (2023). Amino Acids: Insights and Roles in Heterocyclic Chemistry: Volume 1: Protecting Groups . Apple Academic Press.
Sun, R., Wen, Y., He, H., Yuan, L., Wan, Y., Sha, J., ... & Ren, B. (2021). Uridine in twelve pure solvents: Equilibrium solubility, thermodynamic analysis and molecular simulation. Journal of Molecular Liquids, 330, 115663.
Nishimura, T., & Iwai, I. (1994). Studies on Synthetic Nucleosides, II. Novel Synthesis of Pyrimidine Glucosides. Chemical and pharmaceutical bulletin, 12(3), 357-361.
Tolman, R. L., Tolman, G. L., Robins, R. K., & Townsend, L. B. (1970). Pyrrolopyrimidine nucleosides. VI. Synthesis of 1, 3 and 7‐β‐d‐ribofuranosylpyrrolo [2.3‐d] pyrimidines via silylated intermediates. Journal of Heterocyclic Chemistry, 7(4), 799-806.
E. Colvin, 1981 “Silicon in Organic Synthesis”; Butter works, London, p.4.
Wang, H. J., Zhong, Y. Y., Xiao, Y. C., & Chen, F. E. (2022). Chemical and chemoenzymatic stereoselective synthesis of β-nucleosides and their analogues. Organic Chemistry Frontiers, 9(6), 1719-1741.
Desai, S. P., Yatzoglou, G., Turner, J. A., & Taylor, M. S. (2024). Boronic Acid-Catalyzed Regio-and Stereoselective N-Glycosylations of Purines and Other Azole Heterocycles: Access to Nucleoside Analogues. Journal of the American Chemical Society, 146(7), 4973-4984.
Hedger, A. K., Findell, J., Barak, D. S., Schiffer, C. A., Watts, J. K., & Ali, A. (2024). Efficient convergent synthesis of 1, 3-diazepinone nucleosides by ring-closing metathesis and direct glycosylation. RSC advances, 14(50), 37216-37226.
Wang, Q., Mu, J., Zeng, J., Wan, L., Zhong, Y., Li, Q., ... & Chen, F. (2023). Additive-controlled asymmetric iodocyclization enables enantioselective access to both α-and β-nucleosides. Nature Communications, 14(1), 138.
Fleuti, M., Sanchez-Quirante, T., Poštová Slavětínská, L., Tloušt'ová, E., Tichý, M., Gurská, S., ... & Hocek, M. (2024). Synthesis and Biological Profiling of Quinolino-Fused 7-Deazapurine Nucleosides. ACS omega, 9(18), 20557-20570.
Fleuti, M., Sanchez-Quirante, T., Poštová Slavětínská, L., Tloušt'ová, E., Tichý, M., Gurská, S., ... & Hocek, M. (2024). Synthesis and Biological Profiling of Quinolino-Fused 7-Deazapurine Nucleosides. ACS omega, 9(18), 20557-20570
Obika, S., Osawa, T., & Nakasishi, R. (2024). Synthesis and structural analysis of dinucleotides containing 2′, 3′-trans-bridged nucleic acids (2′, 3′-trans-BNAs) with trans-5, 6-or 5, 7-fused ring skeleton.
Wang, G. (2021). Diastereoselective synthesis of Ribo-like nucleoside analogues bearing an all-carbon C3′ quaternary center.
Moirana, E. L. (2022). The Prevalence of Antiretroviral-Therapy-related Adverse Reactions, Hospitalisation, and Mortality among People Living with HIV in Africa-A systematic review and Meta-Analysis.
Avram, S., Bologa, C. G., Holmes, J., Bocci, G., Wilson, T. B., Nguyen, D. T., ... & Oprea, T. I. (2021). DrugCentral 2021 supports drug discovery and repositioning. Nucleic acids research, 49(D1), D1160-D1169.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Yusra A. Mohammed
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.