Synthetization and Characterization of Zinc Oxide Nanoparticles by X- Ray Diffractometry (XRD), Fourier Transforms, Infra-Red Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM) and Antibacterial Activity Test
DOI:
https://doi.org/10.47604/ajps.2294Keywords:
Nanoparticles, Nano Materials, Synthetization, Zinc OxideAbstract
Purpose: Nanomaterials with their derivable potentials offer wide obtain ability and have recently aroused much attention for biomedical applications. Nowadays, nanomaterials-based colorimetric sensing is a quickly emerging field of sensing applications. Nanomaterials are considered as the main component of colorimetric determination of hydrogen peroxide to replace the natural enzyme-based sensors because of some associated intrinsic drawbacks. Considering the advantageous properties of ionic liquid (IL) for various applications, significant attention has been made to the use of ionic liquid stabilized metal NPs which may serve as a regulator to enhance the catalytic performance of the metal nanoparticles in the different IL reaction medium. Methodology: The peroxidase-like activity of IL coated metal NPs (IL-MNPs) have been considered for the catalytic oxidation reaction of chromogenic substrate 3,3,5,5- tetramethylbenzidine (TMB) in the presence of H2O2 at an estimated wavelength of 652 nm. Results: The synthesized metal nanoparticles (Ag) were produced using a chemical reduction method. Various characterization techniques like FTIR, UV-Visible spread Reflectance Spectroscopy [UV-VIS DRS], were employed, which verified the structure, nano-size and successful combination of metal dopant ion into the samples. The molecular structure of ionic liquid with varying cations was produced and confirmed by 1H-NMR spectroscopy. The ionic liquid was coated on metal nanoparticles to enhance their conductivity. Unique Contribution to Theory, Practice and Policy: Optimized reaction conditions like pH, temperature and catalyst dosage affect catalytic activity and color sensing properties. The coating of [Min] Ac on Ag achieved low detection limits and colorimetric detection of [Pyr] based Ag.Downloads
References
. Yadav, S., Rani, N., & Saini, K. (2022, February). A review on transition metal oxides-based nanocomposites, their synthesis techniques, different morphologies and potential applications. In IOP Conference Series: Materials Science and Engineering (Vol. 1225, No. 1, p. 012004). IOP Publishing.
. Huang, Y. W., Wu, C. H., & Aronstam, R. S. (2010). Toxicity of transition metal oxide nanoparticles: recent insights from in vitro studies. Materials, 3(10), 4842-4859.
. Sabir, S., Arshad, M., & Chaudhari, S. K. (2014). Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. The Scientific World Journal, 2014.
. Behera, O. (2011). Synthesis and Characterization of ZnO nanoparticles of various sizes and Applications in Biological systems (Doctoral dissertation).
. Raha, S., & Ahmaruzzaman, M. (2022). ZnO nanostructured materials and their potential applications: progress, challenges and perspectives. Nanoscale Advances, 4(8), 1868-1925.
. Matinise, N., Fuku, X. G., Kaviyarasu, K., Mayedwa, N., & Maaza, M. J. A. S. S. (2017). ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation. Applied Surface Science, 406, 339-347.
. Zikalala, N. E., Azizi, S., Zikalala, S. A., Kamika, I., Maaza, M., Zinatizadeh, A. A., .. & Kaviyarasu, K. (2022). An Evaluation of the Biocatalyst for the Synthesis and Application of Zinc Oxide Nanoparticles for Water Remediation"”A Review. Catalysts, 12(11), 1442.
. Pathak, T. K., & Swart, H. C. (2019). Structural and Luminescence Properties of ZnO Nanoparticles Synthesized by Mixture of Fuel Approach in Solution Combustion Method. In Zinc Oxide Based Nano Materials and Devices. Intech Open.
. Kumar, B. J. (2005). Synthesis and Characterization of ZnO nano-particles.
. Bhadwal, N., Ben Mrad, R., & Behdinan, K. (2023). Review of Zinc Oxide Piezoelectric Nanogenerators: Piezoelectric Properties, Composite Structures and Power Output. Sensors, 23(8), 3859.
. Parihar, V., Raja, M., & Paulose, R. (2018). A brief review of structural, electrical and electrochemical properties of zinc oxide nanoparticles. Reviews on Advanced Materials Science, 53(2), 119-130.
. Haque, M. J., Bellah, M. M., Hassan, M. R., & Rahman, S. (2020). Synthesis of ZnO nanoparticles by two different methods & comparison of their structural, antibacterial, photocatalytic and optical properties. Nano Express, 1(1), 010007.[13]. Jin, S. E., & Jin, H. E. (2019). Synthesis, characterization, and three-dimensional structure generation of zinc oxide-based nanomedicine for biomedical applications. Pharmaceutics, 11(11), 575.
. Gatou, M. A., Lagopati, N., Vagena, I. A., Gazouli, M., & Pavlatou, E. A. (2023). ZnO Nanoparticles from Different Precursors and Their Photocatalytic Potential for Biomedical Use. Nanomaterials, 13(1), 122.
. Jayachandran, A., Aswathy, T. R., & Nair, A. S. (2021). Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract. Biochemistry and Biophysics Reports, 26, 100995.
. Becheri, A., Dürr, M., Lo Nostro, P., & Baglioni, P. (2008). Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. Journal of Nanoparticle Research, 10, 679-689.
. Kadiyala, U., Turali-Emre, E. S., Bahng, J. H., Kotov, N. A., & VanEpps, J. S. (2018). Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus (MRSA). Nanoscale, 10(10), 4927-4939.
. Nava, O. J., Soto-Robles, C. A., Gómez-Gutirrez, C. M., Vilchis-Nestor, A. R., Castro- Beltrán, A., Olivas, A., & Luque, P. A. (2017). Fruit peel extract mediated green synthesis of zinc oxide nanoparticles. Journal of Molecular Structure, 1147, 1-6.
. Ogunyemi, S. O., Abdallah, Y., Zhang, M., Fouad, H., Hong, X., Ibrahim, E., ... & Li, B. (2019). Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artificial cells, nanomedicine, and biotechnology, 47(1), 341-352.
. Deka, B., Baruah, C., Babu, A., & Kalita, P. (2022). Biological and Non-Conventional Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs): Their Potential Applications. Journal of Nanotechnology and Nanomaterials, 3(2), 79-89.
. Dediu, V., Busila, M., Tucureanu, V., Bucur, F. I., Iliescu, F. S., Brincoveanu, O., & Iliescu, C. (2022). Synthesis of ZnO/Au Nanocomposite for Antibacterial Applications. Nanomaterials, 12(21), 3832.
. Mandal, A. K., Katuwal, S., Tettey, F., Gupta, A., Bhattarai, S., Jaisi, S., ... & Parajuli, N. (2022). Current research on zinc oxide nanoparticles: synthesis, characterization, and biomedical applications. Nanomaterials, 12(17), 3066.
. Tănase, M. A., Marinescu, M., Oancea, P., Răducan, A., Mihaescu, C. I., Alexandrescu, E., ... & Cinteza, L. O. (2021). Antibacterial and photocatalytic properties of ZnO nanoparticles obtained from chemical versus Saponaria officinalis extract-mediated synthesis. Molecules, 26(7), 2072.
. Jiang, J., Pi, J., & Cai, J. (2018). The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic chemistry and applications, 2018.
.Smijs, T. G., & Pavel, S. (2011). Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnology, science and applications, 95-112.
. Akhtar, K., Zubair, N., Ikram, S., Khan, Z. U., & Khalid, H. (2017). Synthesis and characterization of ZnO nanostructures with varying morphology. Bulletin of Materials Science.
. Mohd Yusof, H., Mohamad, R., Zaidan, U. H., & Abdul Rahman, N. A. (2019).Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. Journal of animal science and biotechnology, 10, 1-22.e, 40, 459-466.
. Talam, S., Karumuri, S. R., & Gunnam, N. (2012). Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. International Scholarly Research Notices, 2012.
. Ragunathan, R., Velusamy, S., Nallasamy, J. L., Shanmugamoorthy, M., Johney, J., Veerasamy, S., ... & Velusamy, P. (2022). Synthesis and enhanced photocatalytic activity of zinc oxide-based nanoparticles and its antibacterial activity. Journal of Nanomaterials, 2022.
. Haque, M. J., Bellah, M. M., Hassan, M. R., & Rahman, S. (2020). Synthesis of ZnO nanoparticles by two different methods & comparison of their structural, antibacterial, photocatalytic and optical properties. Nano Express, 1(1), 010007.
.Alotaibi, B., Negm, W. A., Elekhnawy, E., El-Masry, T. A., Elharty, M. E., Saleh, A., ... & Mokhtar, F. A. (2022). Antibacterial activity of nano zinc oxide green-synthesized from Gardenia thailandica triveng. Leaves against Pseudomonas aeruginosa clinical isolates: In vitro and in vivo study. Artificial Cells, Nanomedicine, and Biotechnology, 50(1), 96-1061.
. Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., ... & Mohamad, D. (2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro letters, 7, 219-242.
. Spoială, A., Ilie, C. I., Trușcă, R. D., Oprea, O. C., Surdu, V. A., Vasile, B. Ș., ... & Dițu,
L. M. (2021). Zinc oxide nanoparticles for water purification. Materials, 14(16), 4747.
. Gudkov, S. V., Burmistrov, D. E., Serov, D. A., Rebezov, M. B., Semenova, A. A., & Lisitsyn, A. B. (2021). A mini review of antibacterial properties of ZnO nanoparticles. Frontiers in Physics, 9, 641481.
. Elshama, S. S., Abdallah, M. E., & Abdel-Karim, R. I. (2018). Zinc oxide nanoparticles: therapeutic benefits and toxicological hazards. The Open Nanomedicine and Nanotechnology Journal, 5(1).
. Hasnidawani, J. N., Azlina, H. N., Norita, H., Bonnia, N. N., Ratim, S., & Ali, E. S. (2016). Synthesis of ZnO nanostructures using sol-gel method. Procedia Chemistry, 19, 211-216.
. Khoshhesab, Z. M., Sarfaraz, M., & Asadabad, M. A. (2011). Preparation of ZnO nanostructures by chemical precipitation method. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 41(7), 814-819.
. Kumar, S. S., Venkateswarlu, P., Rao, V. R., & Rao, G. N. (2013). Synthesis, characterization and optical properties of zinc oxide nanoparticles. International Nano Letters, 3, 1-6.
. Bulcha, B., Leta Tesfaye, J., Anatol, D., Shanmugam, R., Dwarampudi, L. P., Nagaprasad, N., ... & Krishnaraj, R. (2021). Synthesis of zinc oxide nanoparticles by hydrothermal methods and spectroscopic investigation of ultraviolet radiation protective properties. Journal of Nanomaterials, 2021, 1-10.
Wang, Y., Yang, C., Liu, Y., Fan, Y., Dang, F., Qiu, Y., ... & Liu, Y. (2021). Solvothermal synthesis of ZnO nanoparticles for photocatalytic degradation of methyl orange and p- nitrophenol. Water, 13(22), 3224.
.. Srivastava, V., Gusain, D., & Sharma, Y. C. (2013). Synthesis, characterization and application of zinc oxide nanoparticles (n-ZnO). Ceramics International, 39(8), 9803-9808.
. Darezereshki, E., Alizadeh, M., Bakhtiari, F., Schaffie, M., & Ranjbar, M. (2011). A novel thermal decomposition method for the synthesis of ZnO nanoparticles from low concentration ZnSO4 solutions. Applied Clay Science, 54(1), 107-111.
. Manyasree, D., Kiranmayi, P., & Venkata, R. K. (2018). Characterization and antibacterial activity of ZnO nanoparticles synthesized by co-precipitation method. International Journal of Applied Pharmaceutics, 10(6), 224-228.
. Zahra, S., Bukhari, H., Qaisar, S., Sheikh, A., & Amin, A. (2022). Synthesis of nanosize zinc oxide through aqueous sol-gel route in polyol medium. BMC chemistry, 16(1), 104.
. Klink, M. J., Laloo, N., Leudjo Taka, A., Pakade, V. E., Monapathi, M. E., & Modise, J. S. (2022). Synthesis, characterization and antimicrobial activity of zinc oxide nanoparticles against selected waterborne bacterial and yeast pathogens. Molecules, 27(11), 3532.
. Pathak, T. K., & Swart, H. C. (2019). Structural and Luminescence Properties of ZnO Nanoparticles Synthesized by Mixture of Fuel Approach in Solution Combustion Method. In Zinc Oxide Based Nano Materials and Devices. Intech Open
. Jeyasubramanian, K., Hikku, G. S., & Sharma, R. K. (2015). Photo-catalytic degradation of methyl violet dye using zinc oxide nano particles prepared by a novel precipitation method and its anti-bacterial activities. Journal of water process engineering, 8, 35-44.
. Sharma, V. (2012). Sol-gel mediated facile synthesis of zinc-oxide nanoaggregates, their characterization and antibacterial activity. J. of Applied Chemistry, 2, 52-55.
. Getie, S., Belay, A., Chandra Reddy, A. R., & Belay, Z. (2017). Synthesis and characterizations of zinc oxide nanoparticles for antibacterial applications. J Nanomed Nanotechno S, 8(004).
. Rashid, A. E., Ahmed, M. E., & Hamid, M. K. Evaluation of Antibacterial and Cytotoxicity Properties of Zinc Oxide Nanoparticles Synthesized by Precipitation Method against Methicillin-resistant Staphylococcus aureus.
. Kumar, Y., Singh, V., Pandey, A., Genwa, M., & Meena, P. L. (2020, November). Synthesis, characterization and antibacterial activity of ZnO nanoparticles. In AIP Conference Proceedings (Vol. 2265, No. 1, p. 030119). AIP Publishing LLC.
. Verma, A. K., Singh, P., Malik, M., & Srivastava, S. K. (2022). Synthesis of Zinc Oxide Nanoparticles, its characterization and anti-microbial activity assessment. Indian Journal of Biochemistry and Biophysics (IJBB), 59(11), 1106-1112.
. Hammadi, A. H., Habeeb, S. A., Al-Jibouri, L. F., & Hussien, F. H. (2020). Synthesis, Characterization and Biological Activity of Zinc Oxide Nanoparticles (ZnO NPs). Systematic Reviews in Pharmacy, 11(5), 431-439.
. Vignesh, K., Nair, A. S., Udhayakeerthana, C., & Kalaivani, T. (2022). Synthesis and characterization ZnO nanoparticles using sol-gel method and their antibacterial study. In IOP Conference Series: Materials Science and Engineering (Vol. 1219, No. 1, p. 012019). IOP Publishing.
. Albukhaty, S., Al-Karagoly, H., & Dragh, M. A. (2020). Synthesis of zinc oxide nanoparticles and evaluated its activity against bacterial isolates. J. Biotech Res, 11, 47-53.
. Chitra, K., & Annadurai, G. (2013). Antimicrobial activity of wet chemically engineered spherical shaped ZnO nanoparticles on food borne pathogen. International food research journal, 20(1).
{57]. Khan, M. F., Ansari, A. H., Hameedullah, M., Ahmad, E., Husain, F. M., Zia, Q., ... & Aliev, G. (2016). Sol-gel synthesis of thorn-le ZnO nanoparticles endor
KoÅ‚odziejczak-Radzimska, A., & Jesionowski, T. (2014). Zinc oxide"”from synthesis to application: a review. Materials, 7(4), 2833-2881.
. Salas-Orozco, M. F., Lorenzo-Leal, A. C., de Alba Montero, I., MarÃn, N. P., Santana, M. A. C., & Bach, H. (2024). Mechanism of escape from the antibacterial activity of metal-based nanoparticles in clinically relevant bacteria: A systematic review. Nanomedicine: Nanotechnology, Biology and Medicine, 55, 102715.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Sajid Ullah, Ayesha Gulnaz, Saeed Anwar, Arif Kamal, Husna Wali
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.