Effect of Fertilization on the Severity of Attack by the Defoliator Caterpillar (Noorda blitealis Walker, 1859) and on the Yield of Moringa (Moringa oleifera Lam, 1785)
DOI:
https://doi.org/10.47604/ija.2977Keywords:
Attack Severity, Fertilization, Moringa Oleifera, Noorda Blitealis, Niger, YieldAbstract
Purpose: Moringa, which is increasingly grown pure in semi-intensive and intensive systems, requires adequate fertilization to produce well. In some cases, this operation can inhibit the development of its bioaggressors. The aim of this study was to determine the effect of different types of fertilization on the defoliator caterpillar (Noorda blitealis) and moringa production.
Methodology: The trial was conducted on the Kalapaté experimental station belonging to the Institut ational de la recherche agronomique du Niger over two seasons. The experimental design was a split-plot with 4 replications in which the main plots were represented by fertilizer types (NPK, cattle, poultry and compost). The elementary plots were made up of fertilizer doses (0, 0, 5, 1 and 1.5 kg/ha for organic fertilizers, and 0, 3, 6 and 9 g/package for NPK). The severity of the caterpillar attack and moringa yield were recorded.
Findings: The results showed that NPK acted faster than other fertilizers in reducing the severity of attack by N. blitealis. The reduction rate was 28.40% in the first season compared with cattle manure, which is the most attacked. In the second season, compost had a similar effect to NPK. Both reduced this parameter by over 45% each compare to cattle and poultry manure. Their action consequently increased moringa yield compared with cattle manure and poultry droppings. Also, a negative linear relationship was noted between manure dose and severity of attack, while the dose-yield relationship was of the second-degree polynomial type.
Unique Contribution to Theory, Practice and Policy: Compost can therefore be used to minimize attacks by Noorda blitealis and can enable sustainable production without any risk of toxicity from synthetic pesticides. In view of these results, moringa growers must compost cattle and poultry manure, and all other organic sources of fertilization, before any application.
Downloads
References
Altieri, M.A. and Nicholls, C.I. (2003). Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems. Soil and Tillage Research 72(2): 203-211.
Anjaneya, M. J. and Regupathy A. (1992). Seasonal incidence of Moringa fruitfly. Gitona sp: 43-48.
Altieri, M.A. Ponti, L., Nicholls, C.I. (2012). Soil fertility, biodiversity and pest management. In: Gurr GM, Wratten SD, Snyder WE, Read DMY, (eds.), Biodiversity and Insect Pests: Key Issues for Sustainable Management. John Wiley & Sons, Chichester, UK: 72‐84 ISBN: 978‐0‐470‐65686‐0. DOI: 10.1002/9781118231838.ch5
Bayissa,W., Abera, A., Temesgen, J., Abera, G. and Mendesil, E. (2023). Organic soil fertility management practices for the management of fall armyworm, Spodoptera frugiperda (J.E. Smith), in maize. Front. Insect Sci. 3:1210719. DOI 10.3389/finsc.2023.1210719
Bedane, T.M., Singh, S.K., Selvaraj, T. and Negeri, M. (2013). Distribution and damage status of moringa moth (Noorda blitealis Walker) on Moringa stenopetala Baker (Cufod.) in Southern Rift Valley of Ethiopia. International Journal of Agricultural Technology, 9(4): 963-985.
Boussoussa, Y. (2012). Evaluation du statut potassique des sols salés du Bas-Chellif.
Bradstreet RB, 1954. "Kjeldahl method for organic nitrogen." Analytical Chemistry 26(1): 185-187. Kjeldahl Method for Organic Nitrogen | Analytical Chemistry (acs.org)
Bremner, J. (1960). Determination of nitrogen in soil by the Kjeldahl method. The Journal of Agricultural Science 55(1): 11-33.
Boulama, O., Hassane, M., Yayé, Z. et Patrick, D. (2023). Les résultats du Conseil de gestion à l’exploitation familiale campagne de saison sèche 2021-2022 et 2022- 2023, Chambre Régional d’Agriculture de Dosso 8p
Culliney, T.W. and Pimentel, D. (1986). Ecological effects of organic agricultural practices on insect populations. Agriculture, ecosystems & environment 15(4): 253-266
Chala, A., Tronsmo, A.M. and Brurberg, M.B. (2007). Prevalence and intensity of sorghum anthracnose in Ethiopia. Journal of SAT Agricultural Research, 5, 1-3.
Eigenbrode SD and Pimentel D, 1988. Effects of Manure and Chemical Fertilizers on Insect Pest Populations on Collards. Agriculture, Ecosystems and Environment, 20 : 109-125.
Fallahpour, F., Ghorbani, R., Nassiri, M. and Hosseini, M. (2015). Demographic parameters of Lipaphis erysimi on canola cultivars under different fertilization regimes. Journal of Agriculture Sciences and Technology, 17, 35-47.
Giroux, M. and Tran, T.S. (1985). Evaluation du phosphore assimilable des sols acides avec différentes méthodes d’extraction en relation avec le rendement de l’avoine et les propriétés du sol. Canadian journal of soil science 65(1): 47-60.
Huber, G. et Schaub, C. (2011). La fertilité des sols : L’importance de la matière organique. La Chambre d’agriculture, France, 46 p. https://agriculture-de-conservation.com/sites/agriculture-de-conservation.com/IMG/pdf/ca67-amendements_organiques.pdf
Jacob, N.J., Adja, N.A., Kouadio, K.T., N’gouani, M-P.A., Idrissou, L. (2018). Impact of soil fertility management practices on insect pests and diseases of maize in southwest Cote d’Ivoire. J. Appl. Biosci. 127: 12809-12819. https://dx.doi.org/10.4314/jab.v127i1.6
Jones, P.D. (1999). Journal on the propagation and growing of multipurpose trees, vol. 19, 56: 60–78. In: Vegetative and reproductive tissue of the multipurpose tree. Moringa oleifera. Journal of Agriculture and Food Chemistry 51 :3546– 3553.
Kempf, J. (2020). How the form of nitrogen influences insect feeding. How the form of nitrogen influences insect feeding - John Kempf.
Kouyate, A.B., Kone, S., Dembele, S.G. et Famanta, M. (2023). Effets de différentes doses d’engrais inorganiques sur le rendement et la performance économique du cotonnier. Int. J. Biol. Chem. Sci. 17(7) : 2971
Kwey, M.M., Mukalay, J.B., Bashizi, G., Mulumbati, M.C., Mukonzo, E.K.L. and Longanza, L.B. (2019). Evaluation of the Growth and the Nutritional Status of the Leaves and Roots of Moringa oleifera under the Influence of Organomineral Amendments in Humid Tropical Region. Tropicultura, 37 (2), 615: 1-21.
Masarirambi, M.T., Hlawe, M.H., Oseni, O.T., Sibiya, T.E. (2010). Effects of organic fertilizers on growth, yield, quality and sensory evaluation of red lettuce (Lactuca sativa L.) Veneza Roxa. Agriculture and Biology Journal of North America 1, 1319–1324.
Miguel, A.A. and Nicholls, I.C. (2003). Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems. Soil and Tillage Research, 72 (2) : 203-211. https://doi.org/10.1016/S0167-1987(03)00089-8
Nandju, J., Adja, N.A., Kouadio, K.T., N’gouandia, M-P.A., and Idrissou, L. (2018). Impact of Soil Fertility Management Practices on Insect Pests and Diseases of Maize in Southwest Cote d’Ivoire. Journal of Applied Biosciences, 127 : 12809-12819. https://dx.doi.org/10.4314/jab.v127i1.6
Ostrowska, A. and Porębska, G. (2015). Assessment of the C/N ratio as an indicator of the decomposability of organic matter in forest soils. Ecological Indicators, 49 : 104-109. https://doi.org/10.1016/j.ecolind.2014.09.044
Parker, W.F. (1998). Influence of inorganic fertilizer on multipurpose trees in tropical regions. Journal on the propagation and growing of multipurpose trees 15:40–62.
Patel, C.C., Singh, D., Uikey, V., Choudhary, A., Dindod, A., Padaliya, S.R., and Sridhar, V. (2020). Organic pest management in moringa, maize and sorghum fodder crops. Journal of Entomology and Zoology Studies , 8 (6) : 790-795
Phelan, P.L., Mason, J.F., Stinner, B.R. (1995). Soil-fertility management and host preference by European corn borer, Ostrinia nubilalis (Hübner), on Zea mays L. : A comparison of organic and conventional chemical farming. Agriculture, Ecosystems & Environment, 56 (1) : 1-8. https://www.sciencedirect.com/science/article/abs/pii/0167880995006400
Ponnuswami, V. (2006). Advances in Production of Moringa. https://agritech.tnau.ac.in/horticulture/pdf/Moringa%20English%20book.pdf
Ragumoorthi, K. and Rao, P. (1998). Neem products and plant extracts for managing Moringa fruit fly, Gitona distigma (Meigon). Ecological agriculture and sustainable development Volume 2 Proceedings of International Conference on Ecological Agriculture Towards Sustainable Development, Chandigarh, India, 15-17 November 1997: 250-261.
Ratnadass A., Zakari-Moussa O., Salha H., Minet J. et Seyfoulaye A.A. 2011. Noorda blitealis Walker, un ravageur majeur du Moringa au Niger (Lepidoptera, Crambidae). Bulletin de la Société entomologique de France, 116 (4) : 401-404.
Rowen, E., Tooker, J.F., Blubaugh, C.K. (2019). Managing fertility with animal waste to promote arthropod pest suppression. Biol Control, 134:130–40. doi: 10.1016/j.biocontrol.2019.04.012
Sarwar, M., Kumar, J.P. and Jihui, B. (2018). Comparative effects of compost and NPK fertilizer on vegetative growth, protein, and carbohydrate of Moringa oleifera lam hybrid PKM-1, Journal of Plant Nutrition, DOI: 10.1080/01904167.2018.1462385
Siddo, I.S., Adamou, M.M., Tankari, D.B.A. et Amadou, B.Z. (2021). Evaluation de la production du Moringa oleifera Lam. sur substrat constitué de boue de vidange en fonction de la fertilisation et de la dose d’irrigation. International Journal of Biological and Chemical Sciences 15 (6): 2417-2425.
Sinha, R., Singh, B., Rai, P.K., Kumar, A., Jamwal, S., Sinha, B.K. and Tejada, M.M. (2018). Soil fertility management and its impact on mustard aphid, Lipaphis erysimi (Kaltenbach) (Hemiptera: Aphididae). Cogent Food & Agriculture, 4 (1) : 1450941 : 1-12.
Sofreco (2022). Analyse approfondie de la chaîne de valeur riz au Niger 2021-2030. I3N/UE, Sofreco. 134 p. http://www.environnement.gouv.ne/uploads/documents/l4-etude_moringa.pdf
Springob, G. and Kirchmann, H. (2003). Bulk soil C to N ratio as a simple measure of net N mineralization from stabilized soil organic matter in sandy arable soils. Soil Biology and Biochemistry, 35 (4) : 629-632.
Sturz, A.V. and Christie, B.R. (2003). Soil Agroecosystems: Impacts of Management on Soil Health and Crop Diseases. Soil and Tillage Research, 72 (2) : 105-228.
Tamburini, G., Gils, W.S., Kos, M., Putten, W., Marini, M. (2018). Drought and soil fertility modify fertilization effects on aphid performance in wheat. Basic and Applied Ecology, 30 : https://doi.org/10.1016/j.baae.2018.05.010
Useni, S.Y., Mwema, L.A., Musambi, L., Chinawej, M.M.D., Nyembo, K.L. (2024). L’apport des faibles doses d’engrais minéraux permet-il d’accroitre le rendement du maïs cultivé à forte densité ? Un exemple avec deux variétés de maïs à Lubumbashi. Journal of Applied Biosciences 74 :6131-6140
Walker, L. (2022). Pourquoi nos cultures sont sensibles aux pucerons ? https://www.agro-league.com/blog/pourquoi-nos-cultures-sont-sensibles-aux-pucerons
Yu-Tzu, H., Tse-Chi, S., and Shaw-Yhi H. (2009). Soil Fertility management and pest responses: a comparison of organic and synthetic fertilization. J. Econ. Entomol. 102(1): 160-169.
Zamukulu, P., Mondo, J., Kalumire, P., Ayagirwe, R., Bagula, E., Karume, K., Katunga, D., Baboy, L., Njukwe, E., Nabahungu, L., Lubobo, A., Ndjadi, S., et Mushagalusa, G. (2018). Réponse du soja (Glycine max L.) à des doses croissantes du DAP et Urée au Sud-Kivu, RD Congo. Journal of Applied Biosciences, 122: 12309-12318. https://dx.doi.org/10.4314/jab.v122i1.10
Zehnder, G. (2009). Managing the Soil to Reduce Insect Pests. https://eorganic.org/node/2562.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Bibata Ali Outani, Haougui Adamou, Basso Adamou, Ali Mahamane
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.